首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53050篇
  免费   16017篇
  国内免费   55篇
化学   62118篇
晶体学   104篇
力学   1340篇
数学   3076篇
物理学   2484篇
  2024年   432篇
  2023年   4306篇
  2022年   1443篇
  2021年   2478篇
  2020年   4802篇
  2019年   2389篇
  2018年   2539篇
  2017年   801篇
  2016年   5919篇
  2015年   5837篇
  2014年   5296篇
  2013年   5833篇
  2012年   4061篇
  2011年   2130篇
  2010年   3854篇
  2009年   3628篇
  2008年   1993篇
  2007年   1681篇
  2006年   1020篇
  2005年   940篇
  2004年   765篇
  2003年   635篇
  2002年   539篇
  2001年   220篇
  2000年   195篇
  1999年   131篇
  1997年   128篇
  1996年   176篇
  1995年   188篇
  1994年   134篇
  1993年   269篇
  1992年   138篇
  1988年   122篇
  1985年   137篇
  1984年   132篇
  1982年   140篇
  1981年   153篇
  1980年   175篇
  1979年   148篇
  1978年   149篇
  1977年   202篇
  1976年   230篇
  1975年   209篇
  1974年   227篇
  1973年   137篇
  1972年   165篇
  1971年   129篇
  1970年   212篇
  1969年   131篇
  1968年   144篇
排序方式: 共有10000条查询结果,搜索用时 86 毫秒
971.
Ni‐CeO2 is a highly efficient, stable and non‐expensive catalyst for methane dry reforming at relative low temperatures (700 K). The active phase of the catalyst consists of small nanoparticles of nickel dispersed on partially reduced ceria. Experiments of ambient pressure XPS indicate that methane dissociates on Ni/CeO2 at temperatures as low as 300 K, generating CHx and COx species on the surface of the catalyst. Strong metal–support interactions activate Ni for the dissociation of methane. The results of density‐functional calculations show a drop in the effective barrier for methane activation from 0.9 eV on Ni(111) to only 0.15 eV on Ni/CeO2?x(111). At 700 K, under methane dry reforming conditions, no signals for adsorbed CHx or C species are detected in the C 1s XPS region. The reforming of methane proceeds in a clean and efficient way.  相似文献   
972.
Metal‐nanoparticle‐catalyzed cutting is a promising way to produce graphene nanostructures with smooth and well‐aligned edges. Using a multiscale simulation approach, we unambiguously identified a “Pac‐Man” cutting mechanism, characterized by the metal nanoparticle “biting off” edge carbon atoms through a synergetic effect of multiple metal atoms. By comparing the reaction rates at different types of edge sites, we found that etching of an entire edge carbon row could be triggered by a single zigzag‐site etching event, which explains the puzzling linear dependence of the overall carbon‐atom etching rate on the nanoparticle surface area observed experimentally. With incorporation of the nanoparticle size effect, the mechanisms revealed herein open a new avenue to improve controllability in graphene cutting.  相似文献   
973.
Miniaturized liquid–liquid interfacial reactors offer enhanced surface area and rapid confinement of compounds of opposite solubility, yet they are unable to provide in situ reaction monitoring at a molecular level at the interface. A picoreactor operative at the liquid–liquid interface is described, comprising plasmonic colloidosomes containing Ag octahedra strategically assembled at the water‐in‐decane emulsion interface. The plasmonic colloidosomes isolate ultrasmall amounts of solutions (<200 pL), allowing parallel monitoring of multiple reactions simultaneously. Using the surface‐enhanced Raman spectroscopy (SERS) technique, in situ monitoring of the interfacial protonation of dimethyl yellow (p‐dimethylaminoazobenzene (DY)) is performed, revealing an apparent rate constant of 0.09 min?1 for the first‐order reaction. The presence of isomeric products with similar physical properties is resolved, which would otherwise be indiscernible by other analytical methods.  相似文献   
974.
Tuning the activity of radicals is crucial for radical reactions and radical‐based materials. Herein, we report a supramolecular strategy to accelerate the Fenton reaction through the construction of supramolecularly activated radical cations. As a proof of the concept, cucurbit[7]uril (CB[7]) was introduced, through host–guest interactions, onto each side of a derivative of 1,4‐diketopyrrolo[3,4‐c]pyrrole (DPP), a model dye for Fenton oxidation. The DPP radical cation, the key intermediate in the oxidation process, was activated by the electrostatically negative carbonyl groups of CB[7]. The activation induced a drastic decrease in the apparent activation energy and greatly increased the reaction rate. This facile supramolecular strategy is a promising method for promoting radical reactions. It may also open up a new route for the catalytic oxidation of organic pollutants for water purification and widen the realm of supramolecular catalysis.  相似文献   
975.
976.
The features of different nebulizer systems (cross-flow-, Meinhard- and GMK-system) in the ICP atomic emission spectrometric analyses of solutions with different contents of different salts were evaluated. As basis for the comparison of the nebulizer systems the recovery rates and noise power spectra were used. Both showed that the GMK-system could be used for the widest diversity of salts (sodium chloride, ammonium sulfate and sodium tetraborate) and concentration range (0–10% (m/v)) followed by the cross-flow-system and the Meinhard-system in ICP-OES using a 1 kW argon ICP. Of all nebulizer systems the nebulizer according to Meinhard has the lowest performance for the salts investigated. The noise power spectra of all nebulizer systems are dominated by interference noise from the sample introduction system. This noise increases with the salt concentration of the solution and the GMK-system shows the lowest increase, followed by the cross-flow- and Meinhard-system. Received: 11 October 1999 / Revised: 5 January 2000 / Accepted: 14 January 2000  相似文献   
977.
Carboxylated multiwalled carbon nanotubes (MWCNT-COOH) were used to modify the working electrode surface of different screen-printed electrodes. The effect of this modification on the electrodic characteristics (double layer capacitance, electroactive area and heterogeneous rate constants for the electron transfer) was evaluated and optimized for the cyclic voltammetric determination of p-aminophenol. The enzymatic hydrolysis of p-aminophenylphosphate was employed for the quantification of alkaline phosphatase, one of the most important label enzymes in immunoassays. Finally, ELISA assays were carried out to quantify pneumolysin using this enzymatic system. Results obtained indicated that low superficial densities of MWCNT-COOH (0.03-0.06 μg mm−2) yielded the same electrodic improvements but with better analytical properties.  相似文献   
978.
The tetracycline aptamer is an in vitro selected RNA that binds to the antibiotic with the highest known affinity of an artificial RNA for a small molecule (Kd approximately 0.8 nM). It is one of few aptamers known to be capable of modulating gene expression in vivo. The 2.2 A resolution cocrystal structure of the aptamer reveals a pseudoknot-like fold formed by tertiary interactions between an 11 nucleotide loop and the minor groove of an irregular helix. Tetracycline binds within this interface as a magnesium ion chelate. The structure, together with previous biochemical and biophysical data, indicates that the aptamer undergoes localized folding concomitant with tetracycline binding. The three-helix junction, h-shaped architecture of this artificial RNA is more complex than those of most aptamers and is reminiscent of the structures of some natural riboswitches.  相似文献   
979.
A novel method for cobalt preconcentration by cloud point extraction with on-line phase separation in a PTFE knotted reactor and further determination by electrothermal atomic absorption spectrometry (ETAAS) is proposed. The cloud point system was formed in the presence of non-ionic micelles of polyethyleneglycolmono-p-nonylphenylether (PONPE 7.5) and it was retained on the inner walls of a knotted reactor (KR). The surfactant rich-phase was removed from the knotted reactor with 75 microL of methanol acidified with 0.8 mol L(-1) nitric acid, directly into the dosing hole of the L'Vov graphite tube. An enrichment factor of 15 was obtained with a preconcentration time of 60 s, with respect to the direct determination of cobalt by ETAAS in aqueous solutions. The value of the detection limit for the preconcentration of 5 mL of sample solution was 10 ng L(-1). The precision, expressed as the relative standard deviation (R.S.D.), for 10 replicate determinations at 0.5 microg L(-1) Co level was 4.5%. Verification of the accuracy was carried out by analysis of a standard reference material (NIST SRM 1640e "Trace elements in natural water"). The method was successfully applied to the determination of cobalt in drinking water samples.  相似文献   
980.
The adiabatic finite-nuclear-mass-correction (FNMC) to the electronic energies and wave functions of atoms and molecules is formulated for density-functional theory and implemented in the deMon code. The approach is tested for a series of local and gradient corrected density functionals, using MP2 results and diagonal-Born-Oppenheimer corrections from the literature for comparison. In the evaluation of absolute energy corrections of nonorganic molecules the LDA PZ81 functional works surprisingly better than the others. For organic molecules the GGA BLYP functional has the best performance. FNMC with GGA functionals, mainly BLYP, show a good performance in the evaluation of relative corrections, except for nonorganic molecules containing H atoms. The PW86 functional stands out with the best evaluation of the barrier of linearity of H2O and the isotopic dipole moment of HDO. In general, DFT functionals display an accuracy superior than the common belief and because the corrections are based on a change of the electronic kinetic energy they are here ranked in a new appropriate way. The approach is applied to obtain the adiabatic correction for full atomization of alcanes C(n)H(2n+2), n = 4-10. The barrier of 1 mHartree is approached for adiabatic corrections, justifying its insertion into DFT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号