首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53050篇
  免费   16017篇
  国内免费   55篇
化学   62118篇
晶体学   104篇
力学   1340篇
数学   3076篇
物理学   2484篇
  2024年   432篇
  2023年   4306篇
  2022年   1443篇
  2021年   2478篇
  2020年   4802篇
  2019年   2389篇
  2018年   2539篇
  2017年   801篇
  2016年   5919篇
  2015年   5837篇
  2014年   5296篇
  2013年   5833篇
  2012年   4061篇
  2011年   2130篇
  2010年   3854篇
  2009年   3628篇
  2008年   1993篇
  2007年   1681篇
  2006年   1020篇
  2005年   940篇
  2004年   765篇
  2003年   635篇
  2002年   539篇
  2001年   220篇
  2000年   195篇
  1999年   131篇
  1997年   128篇
  1996年   176篇
  1995年   188篇
  1994年   134篇
  1993年   269篇
  1992年   138篇
  1988年   122篇
  1985年   137篇
  1984年   132篇
  1982年   140篇
  1981年   153篇
  1980年   175篇
  1979年   148篇
  1978年   149篇
  1977年   202篇
  1976年   230篇
  1975年   209篇
  1974年   227篇
  1973年   137篇
  1972年   165篇
  1971年   129篇
  1970年   212篇
  1969年   131篇
  1968年   144篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
The catalytic networks of methylotrophic organisms, featuring redox enzymes for the activation of one‐carbon moieties, can serve as great inspiration in the development of novel homogeneously catalyzed pathways for the interconversion of C1 molecules at ambient conditions. An imidazolium‐tagged arene–ruthenium complex was identified as an effective functional mimic of the bacterial formaldehyde dismutase, which provides a new and highly selective route for the conversion of formaldehyde to methanol in absence of any external reducing agents. Moreover, secondary amines are reductively methylated by the organometallic dismutase mimic in a redox self‐sufficient manner with formaldehyde acting both as carbon source and reducing agent.  相似文献   
952.
953.
A half‐adder and a half‐subtractor have been realized using enzymatic reaction cascades performed in a flow cell device. The individual cells were modified with different enzymes and assembled in complex networks to perform logic operations and arithmetic functions. The modular design of the logic devices allowed for easy re‐configuration, enabling them to perform various functions. The final output signals, represented by redox species [Fe(CN)6]3?/4? or NADH/NAD+, were analyzed optically to derive the calculation results. These output signals might be applicable in the future for actuation processes, for example, substance release activated by logically processed signals.  相似文献   
954.
The development of functional porous carbon with high CO2/N2 selectivity is of great importance for CO2 capture. In this paper, a type of porous carbon with doped pyridinic sites (termed MOFC) was prepared from the carbonization of a pyridyl‐ligand based MOF. Four MOFCs derived from different carbonizing temperatures were prepared. Structural studies revealed high contents of pyridinic‐N groups and nearly the same pore‐size distributions for these MOFCs. Gas‐sorption studies revealed outstanding CO2 uptake at low pressures and room temperature. Owing to the high content of pyridinic‐N groups, the CO2/N2 selectivity on these MOFCs exhibits values of about 40–50, which are among the top values in carbon materials. Further correlation studies demonstrated that the CO2/N2 selectivities show a positive linear relationship with the surface density of pyridinic‐N groups, thus validating the synergistic effect of the doped pyridinic‐N groups on CO2 adsorption selectivity.  相似文献   
955.
Electrospinning, as a novel nontextile filament technology, is an important method to prepare continuous nanofibers and has shown its remarkable advantages, such as a broadly applicable material system, controllable fiber size and structure, and simple process. Electrospun nanofiber membranes prepared by electrospinning have shown promising applications in many fields, such as supercapacitors, lithium‐ion batteries, and sodium‐ion batteries, owing to their large specific surface area and adjustable network pore structure. The principle of electrospinning and key points relevant to its usage in the preparation of high‐performance electrochemical energy storage materials are reviewed herein based on recent publications, particularly focusing on research progress of relative materials. Also, this review describes a distinctive conclusion and perspective on the future challenges and opportunities in electrospun nanomaterials.  相似文献   
956.
Absolute rate coefficients for the reaction between the important environmental free radical oxidant NO3. and a series of N‐ and C‐protected amino acids, di‐ and tripeptides were determined using 355 nm laser flash photolysis of cerium(IV) ammonium nitrate in the presence of the respective substrates in acetonitrile at 298±1 K. Through combination with computational studies it was revealed that the reaction with acyclic aliphatic amino acids proceeds through hydrogen abstraction from the α‐carbon, which is associated with a rate coefficient of about 1.8×106 m ?1 s?1 per abstractable hydrogen atom. The considerably faster reaction with phenylalanine [k=(1.1±0.1)×107 m ?1 s?1] is indicative for a mechanism involving electron transfer. An unprecedented amplification of the rate coefficient by a factor of 7–20 was found with di‐ and tripeptides that contain more than one phenylalanine residue. This suggests a synergistic effect between two aromatic rings in close vicinity, which makes such peptide sequences highly vulnerable to oxidative damage by this major environmental pollutant.  相似文献   
957.
The currently available techniques for molecular imaging capable of reaching atomic resolution are limited to low temperatures, vacuum conditions, or large amounts of sample. Quantum sensors based on the spin‐dependent photoluminescence of nitrogen‐vacancy (NV) centers in diamond offer great potential to achieve single‐molecule detection with atomic resolution under ambient conditions. Diamond nanoparticles could also be prepared with implanted NV centers, thereby generating unique nanosensors that are able to traffic into living biological systems. Therefore, this technique might provide unprecedented access and insight into the structure and function of individual biomolecules under physiological conditions as well as observation of biological processes down to the quantum level with atomic resolution. The theory of diamond quantum sensors and the current developments from their preparation to sensing techniques have been critically discussed in this Minireview.  相似文献   
958.
Methyltransferases have proven useful to install functional groups site‐specifically in different classes of biomolecules when analogues of their cosubstrate S‐adenosyl‐l ‐methionine (AdoMet) are available. Methyltransferases have been used to address different classes of RNA molecules selectively and site‐specifically, which is indispensable for biophysical and mechanistic studies as well as labeling in the complex cellular environment. However, the AdoMet analogues are not cell‐permeable, thus preventing implementation of this strategy in cells. We present a two‐step enzymatic cascade for site‐specific mRNA modification starting from stable methionine analogues. Our approach combines the enzymatic synthesis of AdoMet with modification of the 5′ cap by a specific RNA methyltransferase in one pot. We demonstrate that a substrate panel including alkene, alkyne, and azido functionalities can be used and further derivatized in different types of click reactions.  相似文献   
959.
The design of advanced catalysts for organic reactions is of profound significance. During such processes, electrophilicity and nucleophilicity play vital roles in the activation of chemical bonds and ultimately speed up organic reactions. Herein, we demonstrate a new way to regulate the electro‐ and nucleophilicity of catalysts for organic transformations. Interface engineering in two‐dimensional heteronanostructures triggered electron transfer across the interface. The catalyst was thus rendered more electropositive, which led to superior performance in Ullmann reactions. In the presence of the engineered 2D Cu2S/MoS2 heteronanostructure, the coupling of iodobenzene and para‐chlorophenol gave the desired product in 92 % yield under mild conditions (100 °C). Furthermore, the catalyst exhibited excellent stability as well as high recyclability with a yield of 89 % after five cycles. We propose that interface engineering could be widely employed for the development of new catalysts for organic reactions.  相似文献   
960.
The oxidation of alcohols with N2O as the hydrogen acceptor was achieved with low catalyst loadings of a rhodium complex that features a cooperative bis(olefin)amido ligand under mild conditions. Two different methods enable the formation of either the corresponding carboxylic acid or the ester. N2 and water are the only by‐products. Mechanistic studies supported by DFT calculations suggest that the oxygen atom of N2O is transferred to the metal center by insertion into the Rh?H bond of a rhodium amino hydride species, generating a rhodium hydroxy complex as a key intermediate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号