首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115982篇
  免费   27177篇
  国内免费   8146篇
化学   113442篇
晶体学   1148篇
力学   4790篇
综合类   535篇
数学   8804篇
物理学   22586篇
  2024年   769篇
  2023年   4825篇
  2022年   3111篇
  2021年   4260篇
  2020年   7424篇
  2019年   6367篇
  2018年   4236篇
  2017年   2845篇
  2016年   9146篇
  2015年   9393篇
  2014年   9426篇
  2013年   10851篇
  2012年   9119篇
  2011年   7161篇
  2010年   8214篇
  2009年   8052篇
  2008年   6310篇
  2007年   5192篇
  2006年   4258篇
  2005年   3815篇
  2004年   3201篇
  2003年   2780篇
  2002年   3411篇
  2001年   2594篇
  2000年   2456篇
  1999年   1424篇
  1998年   964篇
  1997年   894篇
  1996年   895篇
  1995年   834篇
  1994年   709篇
  1993年   686篇
  1992年   545篇
  1991年   441篇
  1990年   371篇
  1989年   322篇
  1988年   310篇
  1987年   269篇
  1986年   215篇
  1985年   226篇
  1984年   175篇
  1983年   150篇
  1982年   147篇
  1977年   169篇
  1976年   188篇
  1975年   188篇
  1974年   198篇
  1972年   155篇
  1970年   209篇
  1968年   142篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Disulfide bonds play an important role in thiol-based redox regulation. However, owing to the lack of analytical tools, little is known about how local O2 mediates the reversible thiol/disulfide cycle under protein confinement. In this study, a protein-nanopore inside a glove box is used to control local O2 for single-molecule reaction, as well as a single-molecule sensor for real-time monitoring of the reversible thiol/disulfide cycle. The results demonstrate that the local O2 molecules in protein nanopores could facilitate the redox cycle of disulfide formation and cleavage by promoting a higher fraction of effective reactant collisions owing to nanoconfinement. Further kinetic calculations indicate that the negatively charged residues near reactive sites facilitate proton-involved oxygen-induced disulfide cleavage under protein confinement. The unexpectedly strong oxidation ability of confined local O2 may play an essential role in cellular redox signaling and enzyme reactions.  相似文献   
82.
Polycrystalline metal–organic framework (MOF) layers hold great promise as molecular sieve membranes for efficient gas separation. Nevertheless, the high crystallinity tends to cause inter-crystalline defects/cracks in the nearby crystals, which makes crystalline porous materials face a great challenge in the fabrication of defect-free membranes. Herein, for the first time, we demonstrate the balance between crystallinity and film formation of MOF membrane through a facile in situ modulation strategy. Monocarboxylic acid was introduced as a modulator to regulate the crystallinity via competitive complexation and thus concomitantly control the film-forming state during membrane growth. Through adjusting the ratio of modulator acid/linker acid, an appropriate balance between this structural “trade-off” was achieved. The resulting MOF membrane with moderate crystallinity and coherent morphology exhibits molecular sieving for H2/CO2 separation with selectivity up to 82.5.  相似文献   
83.
Here we report a simple and general method to achieve fully unprotected, stereoselective glycosylation of carboxylic acids, employing bench-stable allyl glycosyl sulfones as donors. Running the glycosylation reaction under basic conditions was crucial for the efficiencies and selectivities. Both the donor activation stage and the glycosidic bond forming stage of the process are compatible with free hydroxyl groups, thereby allowing for the use of fully unprotected glycosyl donors. This transformation is stereoconvergent, occurs under mild and metal-free conditions at ambient temperature with visible light (455 nm) irradiation, and displays remarkable scope with respect to both reaction partners. Many natural products and commercial drugs, including an acid derived from the complex anticancer agent taxol, were efficiently glycosylated. Experimental studies provide insights into the origin of the stereochemical outcome.  相似文献   
84.
The catalytic C(sp3)−C(sp3) coupling of alkyl halides and tertiary amines offers a promising tool for the rapid decoration of amine skeletons. However, this approach has not been well established, partially due to the challenges in precisely distinguishing and controlling the reactivity of amine-coupling partners and their product homologues. Herein, we developed a metal-free photocatalytic system for the aminomethylation of alkyl halides through radical-involved C(sp3)−C(sp3) bond formation, allowing for the synthesis of sterically congested tertiary amines that are of interest in organic synthesis but not easily prepared by other methods. Mechanistic studies disclosed that sterically hindered N-substituents are key to activate the amine coupling partners by tuning their redox potentials to drive the reaction forward.  相似文献   
85.
The role of hydrogen atoms as surface ligands on metal nanoclusters is of profound importance but remains difficult to directly study. While hydrogen atoms often appear to be incorporated formally as hydrides, evidence suggests that they donate electrons to the cluster's delocalized superatomic orbitals and may consequently behave as acidic protons that play key roles in synthetic or catalytic mechanisms. Here we directly test this assertion for the prototypical Au9(PPh3)8H2+ nanocluster, formed by addition of a hydride to the well-characterized Au9(PPh3)83+. Using gas-phase infrared spectroscopy, we were able to unambiguously isolate Au9(PPh3)8H2+ and Au9(PPh3)8D2+, revealing an Au−H stretching mode at 1528 cm−1 that shifts to 1038 cm−1 upon deuteration. This shift is greater than the maximum expected for a typical harmonic potential, suggesting a potential governing cluster-H bonding that has some square-well character consistent with the hydrogen nucleus behaving as a metal atom in the cluster core. Complexing this cluster with very weak bases reveals a redshift of 37 cm−1 in the Au−H vibration, consistent with those typically seen for moderately acidic groups in gas phase molecules and providing an estimate of the acidity of Au9(PPh3)8H2+, at least with regard to its surface reactivity.  相似文献   
86.
Precisely introducing two similar functional groups into bulk chemical alkenes represents a formidable route to complex molecules. Especially, the selective activation of two electrophiles is in crucial demand, yet challenging for cross-electrophile-coupling. Herein, we demonstrate a redox-mediated electrolysis, in which aryl nitriles are both aryl radical precursors and redox-mediators, enables an intermolecular alkene 1,2-diarylation with a remarkable regioselectivity, thereby avoiding the involvement of transition-metal catalysts. This transformation utilizes cyanoarene radical anions for activating various aryl halides (including iodides, bromides, and even chlorides) and affords 1,2-diarylation adducts in up to 83 % yield and >20 : 1 regioselectivity with more than 80 examples, providing a feasible approach to complex bibenzyl derivatives.  相似文献   
87.
How to transfer industrial exhaust gases of nitrogen oxides into high-values product is significantly important and challenging. Herein, we demonstrate an innovative method for artificial synthesis of essential α-amino acids from nitric oxide (NO) by reacting with α-keto acids through electrocatalytic process with atomically dispersed Fe supported on N-doped carbon matrix (AD-Fe/NC) as the catalyst. A yield of valine with 32.1 μmol mgcat−1 is delivered at −0.6 V vs. reversible hydrogen electrode, corresponding a selectivity of 11.3 %. In situ X-ray absorption fine structure and synchrotron radiation infrared spectroscopy analyses show that NO as nitrogen source converted to hydroxylamine that promptly nucleophilic attacked on the electrophilic carbon center of α-keto acid to form oxime and subsequent reductive hydrogenation occurred on the way to amino acid. Over 6 kinds of α-amino acids have been successfully synthesized and gaseous nitrogen source can be also replaced by liquid nitrogen source (NO3). Our findings not only provide a creative method for converting nitrogen oxides into high-valued products, which is of epoch-making significance towards artificial synthesis of amino acids, but also benefit in deploying near-zero-emission technologies for global environmental and economic development.  相似文献   
88.
Low-dimensional (low-D) organic metal halide hybrids (OMHHs) have emerged as fascinating candidates for optoelectronics due to their integrated properties from both organic and inorganic components. However, for most of low-D OMHHs, especially the zero-D (0D) compounds, the inferior electronic coupling between organic ligands and inorganic metal halides prevents efficient charge transfer at the hybrid interfaces and thus limits their further tunability of optical and electronic properties. Here, using pressure to regulate the interfacial interactions, efficient charge transfer from organic ligands to metal halides is achieved, which leads to a near-unity photoluminescence quantum yield (PLQY) at around 6.0 GPa in a 0D OMHH, [(C6H5)4P]2SbCl5. In situ experimental characterizations and theoretical simulations reveal that the pressure-induced electronic coupling between the lone-pair electrons of Sb3+ and the π electrons of benzene ring (lp-π interaction) serves as an unexpected “bridge” for the charge transfer. Our work opens a versatile strategy for the new materials design by manipulating the lp-π interactions in organic–inorganic hybrid systems.  相似文献   
89.
We report a rationally designed membrane-intercalating conjugated oligoelectrolyte (COE), namely COE-IC , which endows aerobic N2-fixing bacteria Azotobacter vinelandii with a light-harvesting ability that enables photosynthetic ammonia production. COE-IC possesses an acceptor-donor-acceptor (A-D-A) type conjugated core, which promotes visible light absorption with a high molar extinction coefficient. Furthermore, COE-IC spontaneously associates with A. vinelandii to form a biohybrid in which the COE is intercalated within the lipid bilayer membrane. In the presence of L-ascorbate as a sacrificial electron donor, the resulting COE-IC /A. vinelandii biohybrid showed a 2.4-fold increase in light-driven ammonia production, as compared to the control. Photoinduced enhancement of bacterial biomass and production of L-amino acids is also observed. Introduction of isotopically enriched 15N2 atmosphere led to the enrichment of 15N-containing intracellular metabolites, consistent with the products being generated from atmospheric N2.  相似文献   
90.
A unique benzannulation strategy for regioselective de novo synthesis of densely functionalized phenols is described. Through metal-mediated formal [2+2+1+1] cycloaddition of two different alkynes and two molecules of CO, a series of densely functionalized phenols were obtained. The benzannulation strategy allows efficient regioselective installation up to five different substituents on a phenol ring. The resulting phenols have a substitution pattern different from those obtained from Dötz and Danheiser benzannulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号