首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40788篇
  免费   15770篇
  国内免费   55篇
化学   53404篇
晶体学   42篇
力学   1153篇
数学   1395篇
物理学   619篇
  2024年   422篇
  2023年   4247篇
  2022年   1407篇
  2021年   2418篇
  2020年   4685篇
  2019年   2227篇
  2018年   2382篇
  2017年   610篇
  2016年   5564篇
  2015年   5508篇
  2014年   4936篇
  2013年   5082篇
  2012年   3065篇
  2011年   1027篇
  2010年   3341篇
  2009年   3267篇
  2008年   1041篇
  2007年   737篇
  2006年   161篇
  2005年   127篇
  2004年   108篇
  2003年   101篇
  2002年   69篇
  1996年   69篇
  1995年   124篇
  1994年   87篇
  1993年   207篇
  1992年   87篇
  1991年   76篇
  1989年   68篇
  1988年   95篇
  1987年   76篇
  1985年   73篇
  1984年   88篇
  1983年   84篇
  1982年   90篇
  1981年   101篇
  1980年   123篇
  1979年   114篇
  1978年   109篇
  1977年   176篇
  1976年   196篇
  1975年   195篇
  1974年   210篇
  1973年   118篇
  1972年   160篇
  1971年   124篇
  1970年   210篇
  1969年   129篇
  1968年   136篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
961.
The effective guidance of mesenchymal stem cell (MSC) differentiation on a substrate by near‐infrared (NIR) light is particularly attractive for tissue engineering and regenerative medicine. However, most of current substrates cannot control multidirectional differentiation of MSCs like natural tissues. Herein, a photocontrolled upconversion‐based substrate was designed and constructed for guiding multidirectional differentiation of MSCs. The substrate enables MSCs to maintain their stem‐cell characteristics due to the anti‐adhesive effect of 4‐(hydroxymethyl)‐3‐nitrobenzoic acid modified poly(ethylene glycol) (P1) attached on the upconversion substrate. Upon NIR irradiation, the P1 is released from the substrate by photocleavage. The detachment of P1 can change cell–matrix interactions dynamically. Moreover, MSCs cultured on the upconversion substrate can be specifically induced to differentiate to adipocytes or osteoblasts by adjusting the NIR laser. Our work provides a new way of using NIR‐based upconversion substrate to modulate the multidirectional differentiation of MSCs.  相似文献   
962.
The first sodiations of (hetero)arenes in continuous flow using NaDA (sodium diisopropylamide) in Me2EtN are reported. This flow procedure enables sodiation of functionalized arenes and heteroarenes that decompose under batch‐sodiation conditions. The resulting sodiated (hetero)arenes react instantly with various electrophiles, such as ketones, aldehydes, isocyanates, alkyl bromides, and disulfides, affording polyfunctionalized (hetero)arenes in high yields. Scale‐up is possible without further optimization.  相似文献   
963.
Recently, PtIV prodrugs have attracted much attention as the next generation of platinum‐based antineoplastic drug candidates. Here we report the discovery and evaluation of monochalcoplatin, a monocarboxylated PtIV prodrug that is among the most cytotoxic PtIV prodrugs to date. Compared with its dicarboxylated counterpart chalcoplatin, monochalcoplatin accumulates astonishingly effectively and rapidly in cancer cells, which is not ascribed to its lipophilicity. The prodrug is quickly reduced, causes DNA damage, and induces apoptosis, resulting in superior cytotoxicity with IC50 values in the nanomolar range in both cisplatin‐sensitive and ‐resistant cells; these IC50 values are up to 422‐fold higher than that of cisplatin. A detailed mechanistic study reveals that monochalcoplatin actively enters cells through a transporter‐mediated process. Moreover, monochalcoplatin shows significant antitumor activity in an in vivo colorectal tumor model. Our study implies a practical strategy for the design of more effective PtIV prodrugs to conquer drug resistance by tuning both cellular uptake pathways and activation processes.  相似文献   
964.
A bulky carboxylic acid bearing three cyclohexylmethyl substituents at the α‐position, namely, tri(cyclohexylmethyl)acetic acid, is demonstrated to act as an efficient ligand source in Pd‐catalyzed intramolecular C(sp2)?H and C(sp3)?H arylation reactions. The reactions proceed smoothly under mild reaction conditions, even at room temperature due to the steric bulk of the carboxylate ligands, which accelerates the rate‐determining C?H bond activation step in the catalytic cycle.  相似文献   
965.
A key challenge faced by organic electrodes is how to promote the redox reactions of functional groups to achieve high specific capacity and rate performance. Here, we report a two‐dimensional (2D) microporous covalent–organic framework (COF), poly(imide‐benzoquinone), via in situ polymerization on graphene (PIBN‐G) to function as a cathode material for lithium‐ion batteries (LIBs). Such a structure favors charge transfer from graphene to PIBN and full access of both electrons and Li+ ions to the abundant redox‐active carbonyl groups, which are essential for battery reactions. This enables large reversible specific capacities of 271.0 and 193.1 mAh g?1 at 0.1 and 10 C, respectively, and retention of more than 86 % after 300 cycles. The discharging/charging process successively involves 8 Li+ and 2 Li+ in the carbonyl groups of the respective imide and quinone groups. The structural merits of PIBN‐G will trigger more investigations into the designable and versatile COFs for electrochemistry.  相似文献   
966.
The perovskite structure is rich in ferroelectricity. In contrast, ferroelectric antiperovskites have been scarcely confirmed experimentally since the discovery of M3AB‐type antiperovskites in the 1930s. Ferroelectricity is now revealed in an organic–inorganic hybrid X3AB antiperovskite structure, which exhibits a clear ferroelectric phase transition 6/mmmF6mm with a high Curie point of 480 K. The physical properties across the phase transition are obviously changed along with the symmetry requirements, providing solid experimental evidence for the ferroelectric phase transition. More interestingly, the discovered antiperovskite shows intense photoluminescence and triboluminescence properties. The confirmation of the triboluminescent ferroelectric antiperovskite will open new avenues to explore excellent optoelectronic properties in the antiperovskite family.  相似文献   
967.
Multinuclear solid‐state NMR studies of Cp*2Sc?R (Cp*=pentamethylcyclopentadienyl; R=Me, Ph, Et) and DFT calculations show that the Sc?Et complex contains a β‐CH agostic interaction. The static central transition 45Sc NMR spectra show that the quadrupolar coupling constants (Cq) follow the trend of Ph≈Me>Et, indicating that the Sc?R bond is different in Cp*2Sc?Et compared to the methyl and phenyl complexes. Analysis of the chemical shift tensor (CST) shows that the deshielding experienced by Cβ in Sc?CH2CH3 is related to coupling between the filled σC‐C orbital and the vacant orbital.  相似文献   
968.
Carbon monoxide (CO) is proposed as an active pharmaceutical agent with promising pharmaceutical prospects, as it has been involved in multifaceted modulation of diverse physiological and pathological processes. However, questions remain for therapeutic application of inhaled CO attributed to the inherent great affinity between CO and hemoglobin. Therefore, a robust platform with the function of CO transport and controllable release, depending on the local status of an organism, is of prominent significance for effectively avoiding the side effects of CO inhalation and optimizing the biological regulation function of CO. Utilizing the oxidative stress biomarker H2O2 as a trigger and combining with photo‐control, a two‐photon H2O2‐activated CO photoreleaser, FB, featuring highly sensitive and specific H2O2 sensing and photocontrollable CO release, was developed and the vasodilation effect of CO against angiotensin II was demonstrated.  相似文献   
969.
Ultrathin two‐dimensional (2D) nanostructures have attracted increasing research interest for energy storage and conversion. However, tackling the key problem of lattice mismatch inducing the instability of ulreathin nanostructures during phase transformations is still a critical challenge. Herein, we describe a facile and scalable strategy for the growth of ultrathin nickel phosphide (Ni2P) nanosheets (NSs) with exposed (001) facets. We show that single‐layer functionalized graphene with residual oxygen‐containing groups and a large lateral size contributes to reducing the lattice strain during phosphorization. The resulting nanostructure exhibits remarkable hydrogen evolution activity and good stability under alkaline conditions.  相似文献   
970.
The synthesis of phosphane‐ene photopolymer networks, where the networks are composed of crosslinked tertiary alkyl phosphines are reported. Taking advantage of the rich coordination chemistry of alkyl phosphines, stibino‐phosphonium and stibino‐bis(phosphonium) functionalized polymer networks could be generated. Small‐molecule stibino‐phosphonium and stibino‐bis(phosphonium) compounds have been well characterized previously and were used as models for spectroscopic comparison to the macromolecular analogues by NMR and XANES spectroscopy. This work reveals that the physical and electronic properties of the materials can be tuned depending on the type of coordination environment. These materials can be used as ceramic precursors, where the Sb‐functionalized polymers influence the composition of the resulting ceramic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号