首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55804篇
  免费   5857篇
化学   58961篇
晶体学   30篇
力学   1101篇
数学   1124篇
物理学   445篇
  2024年   423篇
  2023年   4308篇
  2022年   2471篇
  2021年   3921篇
  2020年   6581篇
  2019年   4094篇
  2018年   2363篇
  2017年   596篇
  2016年   5529篇
  2015年   5495篇
  2014年   4909篇
  2013年   5019篇
  2012年   3014篇
  2011年   943篇
  2010年   3296篇
  2009年   3230篇
  2008年   968篇
  2007年   654篇
  2006年   98篇
  2005年   53篇
  1997年   47篇
  1996年   49篇
  1995年   109篇
  1994年   68篇
  1993年   190篇
  1992年   66篇
  1991年   56篇
  1989年   44篇
  1988年   75篇
  1987年   60篇
  1986年   44篇
  1985年   57篇
  1984年   58篇
  1983年   65篇
  1982年   77篇
  1981年   86篇
  1980年   104篇
  1979年   99篇
  1978年   95篇
  1977年   174篇
  1976年   185篇
  1975年   192篇
  1974年   199篇
  1973年   114篇
  1972年   158篇
  1971年   122篇
  1970年   207篇
  1969年   128篇
  1968年   148篇
  1966年   41篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
    
Three rigid and structurally simple heterocyclic stilbene derivatives, (E)-3H,3′H-[1,1′-biisobenzofuranylidene]-3,3′-dione, (E)-3-(3-oxobenzo[c] thiophen-1(3H)-ylidene)isobenzofuran-1(3H)-one, and (E)-3H,3′H-[1,1′-bibenzo[c] thiophenylidene]-3,3′-dione, are found to fluoresce in their neat solid phases, from upper (S2) and lowest (S1) singlet excited states, even at room temperature in air. Photophysical studies, single-crystal structures, and theoretical calculations indicate that large energy gaps between S2 and S1 states (T2 and T1 states) as well as an abundance of intra and intermolecular hydrogen bonds suppress internal conversions of the upper excited states in the solids and make possible the fluorescence from S2 excited states (phosphorescence from T2 excited states). These results, including unprecedented fluorescence quantum yields (2.3–9.6 %) from the S2 states in the neat solids, establish a unique molecular skeleton for achieving multi-colored emissions from upper excited states by “suppressing” Kasha's rule.  相似文献   
132.
    
Voltage decay and capacity fading are the main challenges for the commercialization of Li-rich Mn-based layered oxides (LLOs). Now, a three-in-one surface treatment is designed via the pyrolysis of urea to improve the voltage and capacity stability of Li1.2Mn0.6Ni0.2O2 (LMNO), by which oxygen vacancies, spinel phase integration, and N-doped carbon nanolayers are synchronously built on the surface of LMNO microspheres. Oxygen vacancies and spinel phase integration suppress irreversible O2 release and help lithium ion diffusion, while N-doped carbon nanolayer mitigates the corrosion of electrolyte with excellent conductivity. The electrochemical performance of LMNO after the treatment improves significantly; the capacity retention rate after 500 cycles at 1 C is still as high as 89.9 % with a very small voltage fading rate of 1.09 mV cycle−1. This three-in-one surface treatment strategy can suppress the voltage decay and capacity fading of LLOs.  相似文献   
133.
The understanding of catalyst deactivation represents one of the major challenges for the methanol-to-hydrocarbon (MTH) reaction over acidic zeolites. Here we report the critical role of intermolecular π-interactions in catalyst deactivation in the MTH reaction on zeolites H-SSZ-13 and H-ZSM-5. π-interaction-induced spatial proximities between cyclopentenyl cations and aromatics in the confined channels and/or cages of zeolites are revealed by two-dimensional solid-state NMR spectroscopy. The formation of naphtalene as a precursor to coke species is favored due to the reaction of aromatics with the nearby cyclopentenyl cations and correlates with both acid density and zeolite topology.  相似文献   
134.
    
Nonaromatic, cross-conjugated, and highly twisted luminogens consisting of acylated succinimides demonstrate aggregation-induced emission characteristics along with tunable multicolor photoluminescence and afterglows in their single crystals. Effective through-space conjugation among different moieties bearing n/π electrons promote the spin–orbit coupling and intersystem crossing and lead to diverse emissive clusters with concurrently rigidified conformations, thus allowing readily tunable emissions. Derived from it, the proof-of-concept application for advanced anti-counterfeiting is illustrated. These results should spur the rational design of novel nonaromatic AIEgens, and moreover advance understandings of the non-traditional intrinsic luminescence and the origin of tunable multicolor afterglows.  相似文献   
135.
    
Miniaturization and acceleration of synthetic chemistry is an emerging area in pharmaceutical, agrochemical, and materials research and development. Herein, we describe the synthesis of iminopyrrolidine-2-carboxylic acid derivatives using chiral glutamine, oxo components, and isocyanide building blocks in an unprecedented Ugi-3-component reaction. We used I-DOT, a positive-pressure-based low-volume and non-contact dispensing technology to prepare more than 1000 different derivatives in a fully automated fashion. In general, the reaction is stereoselective, proceeds in good yields, and tolerates a wide variety of functional groups. We exemplify a pipeline of fast and efficient nanomole-scale scouting to millimole-scale synthesis for the discovery of a useful novel reaction with great scope.  相似文献   
136.
    
Planar luminogens have encountered difficulties in overcoming intrinsic aggregation-caused emission quenching by intermolecular π-π stacking interactions. Although excited-state double-bond reorganization (ESDBR) can guide us on designing planar aggregation-induced emission (AIE) luminogens (AIEgens), its mechanism has yet been elucidated. Major challenges in the field include methods to efficiently restrict ESDBR and enhance AIE performance without using bulky substituents (e.g., tetraphenylethylene and triphenylamine). In this study, we rationally developed fluoro-substituent AIEgens with stronger intermolecular H-bonding interaction for restricted molecular motions and increased crystal density, leading to decreased nonradiative decay rate by one order of magnitude. The adjusted ESDBR properties also show a corresponding response to variation in viscosity. Furthermore, their aggregation-induced reactive oxygen species (ROS) generations have been discovered. The application of such planar AIEgen in treating multidrug-resistant bacteria has been demonstrated in a mouse model. The relationship between ROS generation and distinct E/Z-configurational stacking behaviors have been further understood, providing a design principle for synthesizing planar AIEgen-based photosensitizers.  相似文献   
137.
    
Historically, researchers have put considerable effort into developing automation systems to prepare natural biopolymers such as peptides and oligonucleotides. The availability of such mature systems has significantly advanced the development of natural science. Over the past twenty years, breakthroughs in automated synthesis of oligosaccharides have also been achieved. A machine-driven platform for glycopeptide synthesis by a reconstructed peptide synthesizer is described. The designed platform is based on the use of an amine-functionalized silica resin to facilitate the chemical synthesis of peptides in organic solvent as well as the enzymatic synthesis of glycan epitopes in the aqueous phase in a single reaction vessel. Both syntheses were performed by a peptide synthesizer in a semiautomated manner.  相似文献   
138.
    
Hot carriers (HCs) and thermal effects, stemming from plasmon decays, are crucial for most plasmonic applications. However, quantifying these two effects remains extremely challenging due to the experimental difficulty in accurately measuring the temperature at reaction sites. Herein, we provide a novel strategy to disentangle HCs from photothermal effects based on the different traits of heat dissipation (long range) and HCs transport (short range), and quantitatively uncover the dominant and potential-dependent role of photothermal effect by investigating the rapid- and slow-response currents in plasmon-mediated electrochemistry at nanostructured Ag electrode. Furthermore, the plasmoelectric surface potential is found to contribute to the rapid-response currents, which is absent in the previous studies.  相似文献   
139.
140.
    
Herein, we present a new class of singlet fission (SF) materials based on diradicaloids of carbene scaffolds, namely cyclic (alkyl)(amino)carbenes (CAACs). Our modular approach allows the tuning of two key SF criteria: the steric factor and the diradical character. In turn, we modified the energy landscapes of excited states in a systematic manner to accommodate the needs for SF. We report the first example of intermolecular SF in solution by dimer self-assembly at cryogenic temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号