首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51063篇
  免费   18437篇
  国内免费   194篇
化学   60860篇
晶体学   69篇
力学   1402篇
综合类   1篇
数学   4012篇
物理学   3350篇
  2024年   180篇
  2023年   4304篇
  2022年   1551篇
  2021年   2681篇
  2020年   4946篇
  2019年   2630篇
  2018年   2685篇
  2017年   872篇
  2016年   5998篇
  2015年   5897篇
  2014年   5350篇
  2013年   5812篇
  2012年   4006篇
  2011年   2183篇
  2010年   3897篇
  2009年   3728篇
  2008年   1852篇
  2007年   1469篇
  2006年   918篇
  2005年   817篇
  2004年   643篇
  2003年   504篇
  2002年   450篇
  2001年   267篇
  2000年   184篇
  1999年   195篇
  1998年   168篇
  1997年   208篇
  1996年   215篇
  1995年   254篇
  1994年   182篇
  1993年   292篇
  1992年   155篇
  1991年   136篇
  1988年   121篇
  1982年   130篇
  1981年   133篇
  1980年   150篇
  1979年   134篇
  1978年   139篇
  1977年   202篇
  1976年   231篇
  1975年   213篇
  1974年   232篇
  1973年   139篇
  1972年   166篇
  1971年   135篇
  1970年   224篇
  1969年   134篇
  1968年   150篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
121.
The practical application of Shilov-type Pt catalysis to the selective hydroxylation of terminal aliphatic C−H bonds remains a formidable challenge, due to difficulties in replacing PtIV with a more economically viable oxidant, particularly O2. We report the potential of employing FeCl2 as a suitable redox mediator to overcome the kinetic hurdles related to the direct use of O2 in the Pt reoxidation. For the selective conversion of butyric acid to γ-hydroxybutyric acid (GHB), a significantly enhanced catalyst activity and stability (turnover numbers (TON)>30) were achieved under 20 bar O2 in comparison to current state-of-the-art systems (TON<10). In this regard, essential reaction parameters affecting the overall activity were identified, along with specific additives to attain catalyst stability at longer reaction times. Notably, deactivation by reduction to Pt0 was prevented by the addition of monodentate pyridine derivatives, such as 2-fluoropyridine, but also by introducing varying partial pressures of N2 in the gaseous atmosphere. Finally, stability tests revealed the involvement of PtII and FeCl2 in catalyzing the non-selective overoxidation of GHB. Accordingly, in situ esterification with boric acid proved to be a suitable strategy to maintain enhanced selectivities at much higher conversions (TON>60). Altogether, a useful catalytic system for the selective hydroxylation of primary aliphatic C−H bonds with O2 is presented.  相似文献   
122.
Development of supramolecular methods to further activate a highly reactive intermediate is a fascinating strategy to create novel potent catalysts for activation of inert chemicals. Herein, a supramolecular approach to enhance the oxidizing ability of a high-valent oxo species of a nitrido-bridged iron porphyrinoid dimer that is a known potent molecular catalyst for light alkane oxidation is reported. For this purpose, a nitrido-bridged dinuclear iron complex of porphyrin-phthalocyanine heterodimer 3 5+, which is connected through a fourfold rotaxane, was prepared. Heterodimer 3 5+ catalyzed ethane oxidation in the presence of H2O2 at a relatively low temperature. The site-selective complexation of 3 5+ with an additional anionic porphyrin (TPPS4−) through π–π stacking and electrostatic interactions afforded a stable 1:1 complex. It was demonstrated that the supramolecular post-synthetic modification of 3 5+ enhances its catalytic activity efficiently. Moreover, supramolecular conjugates achieved higher catalytic ethane oxidation activity than nitrido-bridged iron phthalocyanine dimer, which is the most potent iron-oxo-based molecular catalyst for light-alkane oxidation reported so far. Electrochemical measurements proved that the electronic perturbation from TPPS4− to 3 5+ enhanced the catalytic activity.  相似文献   
123.
The Mills reaction and cyclization of readily available 2-aminobenzyl alcohols and nitrosobenzenes using thionyl bromide provided 2H-indazoles in up to 88 % yields. In the metal-free process, acetic acid played a crucial role for the both Mills reaction and cyclization. A brominated 2H-indazole could also be obtained through the one-pot sequence.  相似文献   
124.
125.
126.
Although small cyclic- and open-chain unsaturated hydrocarbon anions such as cyclopentadienide and open-chain pentadienide are used as the strongly electron-donating auxiliary ligands for metal complexes, more extended π-conjugated unsaturated hydrocarbon anions have rarely been used in coordination chemistry, despite their potential ability to serve as the multiply bridging π-ligands for metal clusters. This work reports isolation of metal chain clusters bearing the multi-dentate, open-chain extended unsaturated hydrocarbon anion ligands. The extended open-chain π-conjugated polyenyl ligands could effectively stabilize oxidized palladium chains, including an unprecedented [Pd4]4+ chain.  相似文献   
127.
Hybrid materials in which reduced graphene oxide (rGO) is decorated with Au nanoparticles (rGO–Au NPs) were obtained by the in situ reduction of GO and AuCl4?(aq) by ascorbic acid. On laser excitation, rGO could be oxidized as a result of the surface plasmon resonance (SPR) excitation in the Au NPs, which generates activated O2 through the transfer of SPR‐excited hot electrons to O2 molecules adsorbed from air. The SPR‐mediated catalytic oxidation of p‐aminothiophenol (PATP) to p,p′‐dimercaptoazobenzene (DMAB) was then employed as a model reaction to probe the effect of rGO as a support for Au NPs on their SPR‐mediated catalytic activities. The increased conversion of PATP to DMAB relative to individual Au NPs indicated that charge‐transfer processes from rGO to Au took place and contributed to improved SPR‐mediated activity. Since the transfer of electrons from Au to adsorbed O2 molecules is the crucial step for PATP oxidation, in addition to the SPR‐excited hot electrons of Au NPs, the transfer of electrons from rGO to Au contributed to increasing the electron density of Au above the Fermi level and thus the Au‐to‐O2 charge‐transfer process.  相似文献   
128.
The resistance of metal–organic frameworks towards water is a very critical issue concerning their practical use. Recently, it was shown for microporous MOFs that the water stability could be increased by introducing hydrophobic pendant groups. Here, we demonstrate a remarkable stabilisation of the mesoporous MOF Al‐MIL‐101‐NH2 by postsynthetic modification with phenyl isocyanate. In this process 86 % of the amino groups were converted into phenylurea units. As a consequence, the long‐term stability of Al‐MIL‐101‐URPh in liquid water could be extended beyond a week. In water saturated atmospheres Al‐MIL‐101‐URPh decomposed at least 12‐times slower than the unfunctionalised analogue. To study the underlying processes both materials were characterised by Ar, N2 and H2O sorption measurements, powder X‐ray diffraction, thermogravimetric and chemical analysis as well as solid‐state NMR and IR spectroscopy. Postsynthetic modification decreased the BET equivalent surface area from 3363 to 1555 m2 g?1 for Al‐MIL‐101‐URPh and reduced the mean diameters of the mesopores by 0.6 nm without degrading the structure significantly and reducing thermal stability. In spite of similar water uptake capacities, the relative humidity‐dependent uptake of Al‐MIL‐101‐URPh is slowed and occurs at higher relative humidity values. In combination with 1H‐27Al D ‐HMQC NMR spectroscopy experiments this favours a shielding mechanism of the Al clusters by the pendant phenyl groups and rules out pore blocking.  相似文献   
129.
Developing clean and sustainable energies as alternatives to fossil fuels is in strong demand within modern society. The oxygen evolution reaction (OER) is the efficiency-limiting process in plenty of key renewable energy systems, such as electrochemical water splitting and rechargeable metal–air batteries. In this regard, ongoing efforts have been devoted to seeking high-performance electrocatalysts for enhanced energy conversion efficiency. Apart from traditional precious-metal-based catalysts, nickel-based compounds are the most promising earth-abundant OER catalysts, attracting ever-increasing interest due to high activity and stability. In this review, the recent progress on nickel-based oxide and (oxy)hydroxide composites for water oxidation catalysis in terms of materials design/synthesis and electrochemical performance is summarized. Some underlying mechanisms to profoundly understand the catalytic active sites are also highlighted. In addition, the future research trends and perspectives on the development of Ni-based OER electrocatalysts are discussed.  相似文献   
130.
Driven and non-equilibrium quantum states of matter have attracted growing interest in both theoretical and experimental studies in condensed matter physics. Recent progress in realizing transient collective states in driven or pumped Dirac materials (DMs) is reviewed herein. In particular, the focus is on optically pumped DMs which are a promising platform for transient excitonic instabilities. Optical pumping combined with the linear (Dirac) dispersion of the electronic spectrum offers a knob for tuning the effective interaction between the photoexcited electrons and holes, and thus provides a way of reducing the critical coupling for excitonic instability. As a result, a transient excitonic condensate could be achieved in a pumped DM while it is not feasible in equilibrium. A unifying theoretical framework is provided for describing transient collective states in 2D and 3D DMs. The experimental signatures are described and numerical estimates of the size of the dynamically induced excitonic gaps and the values of the critical temperatures for several specific systems, are summarized. In addition, general guidelines for identifying promising material candidates are discussed. Finally, comments are provided regarding recent experimental efforts in realizing transient excitonic condensate in pumped DMs, and outstanding issues and possible future directions are outlined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号