首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64959篇
  免费   22474篇
  国内免费   2936篇
化学   74163篇
晶体学   276篇
力学   3308篇
综合类   189篇
数学   5263篇
物理学   7170篇
  2024年   204篇
  2023年   4868篇
  2022年   1965篇
  2021年   3251篇
  2020年   5604篇
  2019年   3178篇
  2018年   2968篇
  2017年   1167篇
  2016年   6748篇
  2015年   6773篇
  2014年   6439篇
  2013年   6902篇
  2012年   4973篇
  2011年   2749篇
  2010年   4867篇
  2009年   4846篇
  2008年   2517篇
  2007年   1987篇
  2006年   1161篇
  2005年   1135篇
  2004年   907篇
  2003年   747篇
  2002年   803篇
  2001年   679篇
  2000年   525篇
  1999年   409篇
  1998年   369篇
  1997年   377篇
  1996年   354篇
  1995年   376篇
  1994年   338篇
  1993年   403篇
  1992年   288篇
  1991年   238篇
  1990年   189篇
  1989年   188篇
  1988年   214篇
  1980年   211篇
  1979年   210篇
  1978年   227篇
  1977年   344篇
  1976年   402篇
  1975年   484篇
  1974年   510篇
  1973年   327篇
  1972年   455篇
  1971年   419篇
  1970年   625篇
  1969年   459篇
  1968年   489篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
We present the fabrication of core-shell-satellite Au@SiO2-Pt nanostructures and demonstrate that LSPR excitation of the core Au nanoparticle can induce plasmon coupling effect to initiate photocatalytic hydrogen generation from decomposition of formic acid. Further studies suggest that the plasmon coupling effect induces a strong local electric field between the Au core and Pt nanoparticles on the SiO2 shell, which enables creation of hot electrons on the non-plasmonic-active Pt nanoparticles to participate hydrogen evolution reaction on the Pt surface. In addition, small SiO2 shell thickness is required in order to obtain a strong plamon coupling effect and achieve efficient photocatalytic activities for hydrogen generation.  相似文献   
62.
Hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) have been deemed as clean and sustainable strategies to solve the energy crisis and environmental problems. Various catalysts have been developed to promote the process of HER and OER. Among them, two-dimensional covalent organic frameworks (2D COFs) have received great attention due to their diverse and designable structure. In this minireview, we mainly summarize the diverse linkages of 2D COFs and strategies for enhancing the catalytic performance of 2D COFs for HER and OER, such as introducing active building blocks, metal ions and tailored linkages. Furthermore, a brief outlook for the development directions of COFs in the field of HER and OER is provided, expecting to stimulate new opportunities in future research.  相似文献   
63.
In this research article, we describe the synthesis and characterization of mononuclear and dinuclear Cu complexes bound by a family of tridentate redox-active ligands with tunable H-bonding donors. The mononuclear Cu-anion complexes were oxidized to the corresponding “high-valent” intermediates by oxidation of the redox-active ligand. These species were capable of oxidizing phenols with weak O−H bonds via H-atom abstraction. Thermodynamic analysis of the H-atom abstractions, which included reduction potential measurements, pKa determination and kinetic studies, revealed that modification of the anion coordinated to the Cu and changes in the H-bonding donor did not lead to major differences in the reactivity of the “high-valent” CuY complexes (Y: hydroxide, phenolate and acetate), which indicated that the tridentate ligand scaffold acts as the H+ and e acceptor.  相似文献   
64.
A photoluminescent bimetallic cluster [Ag10Cu6(bdppthi)2(C≡CPh)12(MeOH)2(H2O)](ClO4)4 ( 1 , bdppthi=N,N’-bis(diphenylphosphanylmethyl)-tetrahydroimidazole} was synthesized from the PNNP type ligand bdppthi generated in-situ. Upon excitation at 365 nm, 1 exhibited strong phosphorescent emission at 630 nm, which was selectively quenched by NH3 in air or water. The sensing of NH3 was rapid and recoverable, with detection limits of 53 ppm (v/v) in N2 and 21 μmol/L (0.36 ppm, w/w) for NH3 ⋅ H2O in water. Cluster 1 could potentially serve as a bifunctional chemical sensor for the efficient detection of ammonia in waste-gas and waste-water.  相似文献   
65.
The biodegradability of phtalic acid esters in marine and freshwater environments was characterized by their binding free energy with corresponding degrading enzymes. According to comprehensive biodegradation effects weights, the binding free energy values were converted into dimensionless efficacy coefficient using ratio normalization method. Then, considering comprehensive dual biodegradation effects value and the structural parameters of PAEs in both marine and freshwater environments, a 3D-QSAR pharmacophore model was constructed, five PAE derivatives (DBP−COOH, DBP−CHO, DBP−OH, DINP−NH2, and DINP−NO2) were screened out based on their environmental friendliness, functionality and stability. The prediction of biodegradation effects on five PAE derivatives by biodegradation models in marine and freshwater environment increased by 15.90 %, 15.84 %, 27.21 %, 12.33 %, and 8.32 %, and 21.57 %, 15.21 %, 20.99 %, 15.10 %, and 9.74 %, respectively. By simulating the photodegradation path of the PAE derivative molecular, it was found that DBP−OH can generate .OH and provides free radicals for the photodegradation of microplastics in the environment.  相似文献   
66.
New salts based on imidazolium, pyrrolidinium, phosphonium, guanidinium, and ammonium cations together with the 5‐cyanotetrazolide anion [C2N5]? are reported. Depending on the nature of cation–anion interactions, characterized by XRD, the ionic liquids (ILs) have a low viscosity and are liquid at room temperature or have higher melting temperatures. Thermogravimetric analysis, cyclic voltammetry, viscosimetry, and impedance spectroscopy display a thermal stability up to 230 °C, an electrochemical window of 4.5 V, a viscosity of 25 mPa s at 20 °C, and an ionic conductivity of 5.4 mS cm?1 at 20 °C for the IL 1‐butyl‐1‐methylpyrrolidinium 5‐cyanotetrazolide [BMPyr][C2N5]. On the basis of these results, the synthesized compounds are promising electrolytes for lithium‐ion batteries.  相似文献   
67.
The synthesis and characterisation of a family of block codendrimers consisting of highly versatile mesogenic and carbazole‐containing 2,2‐bis(hydroxymethyl)propionic acid (bis‐MPA) dendrons are reported. The liquid‐crystal behaviour was investigated by means of differential scanning calorimetry, polarised‐light optical microscopy and X‐ray diffraction. Depending on the chemical structure of the constituent dendrons, the codendrimers show lamellar or columnar mesophases. On the basis of the experimental results, models both at the molecular level and in the mesophase are proposed. The physical properties of the block codendrimers derived from the presence of the carbazole moiety in their structure were investigated: photoluminescence in solution and in the mesophase, electrochemical behaviour and hole transport. Electrodeposition of carbazole dendrons afforded a globular supramolecular conformation in which the mesogenic molecular side plays a key role.  相似文献   
68.
By tuning the length and rigidity of the spacer of bis(biurea) ligands L, three structural motifs of the A2L3 complexes (A represents anion, here orthophosphate PO43?), namely helicate, mesocate, and mono‐bridged motif, have been assembled by coordination of the ligand to phosphate anion. Crystal structure analysis indicated that in the three complexes, each of the phosphate ions is coordinated by twelve hydrogen bonds from six surrounding urea groups. The anion coordination properties in solution have also been studied. The results further demonstrate the coordination behavior of phosphate ion, which shows strong tendency for coordination saturation and geometrical preference, thus allowing for the assembly of novel anion coordination‐based structures as in transition‐metal complexes.  相似文献   
69.
A new amino‐functionalized strontium–carboxylate‐based metal–organic framework (MOF) has been synthesized that undergoes single crystal to single crystal (SC‐to‐SC) transformation upon desolvation. Both structures have been characterized by single‐crystal X‐ray analysis. The desolvated structure shows an interesting 3D porous structure with pendent ?NH2 groups inside the pore wall, whereas the solvated compound possesses a nonporous structure with DMF molecules on the metal centers. The amino group was postmodified through Schiff base condensation by pyridine‐2‐carboxaldehyde and palladium was anchored on that site. The modified framework has been utilized for the Suzuki cross‐coupling reaction. The compound shows high activity towards the C?C cross‐coupling reaction with good yields and turnover frequencies. Gas adsorption studies showed that the desolvated compound had permanent porosity and was microporous in nature with a BET surface area of 2052 m2 g?1. The material also possesses good CO2 (8 wt %) and H2 (1.87 wt %) adsorption capabilities.  相似文献   
70.
We have synthesized a series of triarylamine‐cored molecules equipped with an adjacent amide moiety and dendritic peripheral tails in a variety of modes. We show by 1H NMR and UV/Vis spectroscopy that their supramolecular self‐assembly can be promoted in solution upon light stimulation and radical initiation. In addition, we have probed their molecular arrangements and mesomorphic properties in the bulk by integrated studies on their film state by using differential scanning calorimetry (DSC), variable‐temperature polarizing optical microscopy (VT‐POM), variable‐temperature X‐ray diffraction (VT‐XRD), and atomic force microscopy (AFM). Differences in the number and the disposition of the peripheral tails significantly affect their mesomorphic properties associated with their lamellar‐ or columnar‐packed nanostructures, which are based on segregated stacks of the triphenylamine cores and the lipophilic/lipophobic periphery. Such structural tuning is of interest for implementation of these soft self‐assemblies as electroactive materials from solution to mesophases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号