首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1608篇
  免费   58篇
  国内免费   10篇
化学   973篇
晶体学   11篇
力学   63篇
数学   90篇
物理学   539篇
  2023年   24篇
  2022年   47篇
  2021年   59篇
  2020年   51篇
  2019年   52篇
  2018年   53篇
  2017年   59篇
  2016年   74篇
  2015年   47篇
  2014年   74篇
  2013年   139篇
  2012年   115篇
  2011年   140篇
  2010年   63篇
  2009年   52篇
  2008年   73篇
  2007年   69篇
  2006年   70篇
  2005年   53篇
  2004年   40篇
  2003年   33篇
  2002年   29篇
  2001年   17篇
  2000年   14篇
  1999年   9篇
  1998年   13篇
  1997年   14篇
  1996年   21篇
  1995年   17篇
  1994年   16篇
  1993年   9篇
  1992年   14篇
  1991年   5篇
  1990年   8篇
  1989年   8篇
  1988年   6篇
  1987年   2篇
  1986年   7篇
  1985年   11篇
  1984年   10篇
  1983年   7篇
  1982年   7篇
  1981年   4篇
  1980年   6篇
  1979年   9篇
  1978年   7篇
  1976年   4篇
  1975年   4篇
  1974年   3篇
  1969年   2篇
排序方式: 共有1676条查询结果,搜索用时 15 毫秒
991.
Reaction of MnII(CH3COO)2 with dibasic tetradentate ligands, N,N′-ethylenebis(pyridoxylideneiminato) (H2pydx-en, I), N,N′-propylenebis(pyridoxylideneiminato) (H2pydx-1,3-pn, II) and 1-methyl-N,N′-ethylenebis(pyridoxylideneiminato) (H2pydx-1,2-pn, III) followed by aerial oxidation in the presence of LiCl gives complexes [MnIII(pydx-en)Cl(H2O)] (1) [MnIII(pydx-1,3-pn)Cl(CH3OH)] (2) and [MnIII(pydx-1,2-pn)Cl(H2O)] (3), respectively. Crystal and molecular structures of [Mn(pydx-en)Cl(H2O)] (1) and [Mn(pydx-1,3-pn)Cl(CH3OH)] (2) confirm their octahedral geometry and the coordination of ligands through ONNO(2-) form. Reaction of manganese(II)-exchanged zeolite-Y with these ligands in refluxing methanol followed by aerial oxidation in the presence of NaCl leads to the formation of the corresponding zeolite-Y encapsulated complexes, abbreviated herein as [MnIII(pydx-en)]-Y (4), [MnIII(pydx-1,3-pn)]-Y (5) and [MnIII(pydx-1,2-pn)]-Y (6). These encapsulated complexes are used as catalysts for the oxidation, by H2O2, of methyl phenyl sulfide, styrene and benzoin efficiently. Oxidation of methyl phenyl sulfide under the optimized reaction conditions gave ca. 86% conversion with two major products methyl phenyl sulfoxide and methyl phenyl sulfone in the ca. 70% and 30% selectivity, respectively. Oxidation of styrene catalyzed by these complexes gave at least five products namely styrene oxide, benzaldehyde, benzoic acid, 1-phenylethane-1,2-diol and phenylacetaldehyde with a maximum of 76.9% conversion of styrene by 4, 76.3% by 5 and 76.0% by 6 under optimized conditions. The selectivity of the obtained products followed the order: benzaldehyde > benzoic acid > styrene oxide > phenylacetaldehyde > 1-phenylethane-1,2-diol. Similarly, ca. 93% conversion of benzoin was obtained by these catalysts, where the selectivity of the products followed the order benzil > benzoic acid > benzaldehyde-dimethylacetal. Tests for the recyclability and heterogeneity of the reactions have also been carried. Neat complexes are equally active. However, the recycle ability of encapsulated complexes makes them better over neat ones.  相似文献   
992.
Motivated by the sidewise motions of dynein motors shown in experiments, we use a variant of the exclusion process to model the multistep dynamics of dyneins on a cylinder with open ends. Due to the varied step sizes of the particles in a quasi-two-dimensional topology, we observe the emergence of a novel phase diagram depending on the various load conditions. Under high-load conditions, our numerical findings yield results similar to the TASEP model with the presence of all three standard TASEP phases, namely the low-density (LD), high-density (HD), and maximal-current (MC) phases. However, for medium- to low-load conditions, for all chosen influx and outflux rates, we only observe the LD and HD phases, and the maximal-current phase disappears. Further, we also measure the dynamics for a single dynein particle which is logarithmically slower than a TASEP particle with a shorter waiting time. Our results also confirm experimental observations of the dwell time distribution: The dwell time distribution for dyneins is exponential in less crowded conditions, whereas a double exponential emerges under overcrowded conditions.  相似文献   
993.
Nonlinear Dynamics - Dispersal-induced pattern formation is important from both fundamental and application points of view. Spatial pattern in an ecological system can strongly depend on exogenous...  相似文献   
994.
Valproic acid (VPA) is a well-established anticonvulsant drug discovered serendipitously and marketed for the treatment of epilepsy, migraine, bipolar disorder and neuropathic pain. Apart from this, VPA has potential therapeutic applications in other central nervous system (CNS) disorders and in various cancer types. Since the discovery of its anticonvulsant activity, substantial efforts have been made to develop structural analogues and derivatives in an attempt to increase potency and decrease adverse side effects, the most significant being teratogenicity and hepatotoxicity. Most of these compounds have shown reduced toxicity with improved potency. The simple structure of VPA offers a great advantage to its modification. This review briefly discusses the pharmacology and molecular targets of VPA. The article then elaborates on the structural modifications in VPA including amide-derivatives, acid and cyclic analogues, urea derivatives and pro-drugs, and compares their pharmacological profile with that of the parent molecule. The current challenges for the clinical use of these derivatives are also discussed. The review is expected to provide necessary knowledgebase for the further development of VPA-derived compounds.  相似文献   
995.
Polycyclic aromatic hydrocarbons (PAHs) find multiple applications ranging from fabric dyes to optoelectronic materials. Hydrogenation of PAHs is often employed for their purification or derivatization. However, separation of PAHs from their hydrogenated analogues is challenging because of their similar physical properties. An example of such is the separation of 9,10-dihydroanthracene from phenanthrene/anthracene which requires fractional distillation at high temperature (∼340 °C) to obtain pure anthracene/phenanthrene in coal industry. Herein we demonstrate a new approach for this separation at room temperature using a water-soluble interlocked cage (1) as extracting agent by host–guest chemistry. The cage was obtained by self-assembly of a triimidazole donor L·HNO3 with cis-[(tmeda)Pd(NO3)2] (M) [tmeda = N,N,N′,N′-tetramethylethane-1,2-diamine]. 1 has a triply interlocked structure with an inner cavity capable of selectively binding planar aromatic guests.

We report here a triply interlocked cage with the ability to encapsulate planar guests in aqueous medium. This property was then employed to efficiently separate planar and non-planar aromatic hydrocarbons by aqueous extraction.  相似文献   
996.
Predicting and designing systems with dynamic self-assembly properties in a spatiotemporal fashion is an important research area across disciplines ranging from understanding the fundamental non-equilibrium features of life to the fabrication of next-generation materials with life-like properties. Herein, we demonstrate a spatiotemporal dynamics pattern in the self-assembly behavior of a surfactant from an unorganized assembly, induced by adenosine triphosphate (ATP) and enzymes responsible for the degradation or conversion of ATP. We report the different behavior of two enzymes, alkaline phosphatase (ALP) and hexokinase (HK), towards adenosine triphosphate (ATP)-driven surfactant assembly, which also results in contrasting spatiotemporal dynamic assembly behavior. Here, ALP acts antagonistically, resulting in transient self-assemblies, whereas HK shows agonistic action with the ability to sustain the assemblies. This dynamic assembly behavior was then used to program the time-dependent emergence of a self-assembled structure in a two-dimensional space by maintaining concentration gradients of the enzymes and surfactant at different locations, demonstrating a new route for obtaining ‘spatial’ organizational adaptability in a self-organized system of interacting components for the incorporation of programmed functionality.

We have shown ATP-driven spatiotemporally distinct self-organization pattern of a surfactant in a two-dimensional space using enzymes, demonstrating a new route for obtaining ‘spatial’ organizational adaptability among interacting components.  相似文献   
997.
The attainment of spatiotemporally inhomogeneous chemical and physical properties within a system is gaining attention across disciplines due to the resemblance to environmental and biological heterogeneity. Notably, the origin of natural pH gradients and how they have been incorporated in cellular systems is one of the most important questions in understanding the prebiotic origin of life. Herein, we have demonstrated a spatiotemporal pH gradient formation pattern on a hydrogel surface by employing two different enzymatic reactions, namely, the reactions of glucose oxidase (pH decreasing) and urease (pH increasing). We found here a generic pattern of spatiotemporal change in pH and proton transfer catalytic activity that was completely altered in a cationic gold nanoparticle containing hydrogel. In the absence of nanoparticles, the gradually generated macroscopic pH gradient slowly diminished with time, whereas the presence of nanoparticles helped to perpetuate the generated gradient effect. This behavior is due to the differential responsiveness of the interface of the cationic nanoparticle in temporally changing surroundings with increasing or decreasing pH or ionic contents. Moreover, the catalytic proton transfer ability of the nanoparticle showed a concerted kinetic response following the spatiotemporal pH dynamics in the gel matrix. Notably, this nanoparticle-driven spatiotemporally resolved gel matrix will find applicability in the area of the membrane-free generation and control of spatially segregated chemistry at the macroscopic scale.

This work reports perpetuating effect in enzymatically generated spatiotemporal pH gradient across a hydrogel in presence of cationic gold nanoparticle; showing a new route in spatially resolved chemistry in a membrane-free environment.  相似文献   
998.
This article reveals 4-dimethylaminopyridine (DMAP) regulated pathway selectivity in the supramolecular polymerization of a naphthalene-diimide derivative (NDI-1), appended with a carboxylic acid group. In decane, NDI-1 produces ill-defined aggregate (Agg-1) due to different H-bonding motifs of the −COOH group. With one mole equivalent DMAP, the NDI-1/DMAP complex introduces new nucleation condition and exhibits a cooperative supramolecular polymerization producing J-aggregated fibrillar nanostructure (Agg-2). With 10 % DMAP and fast cooling (10 K/min), similar nucleation and open chain H-bonding with the free monomer in an anti-parallel arrangement produces identical J-aggregate (Agg-2a). With 2.5 % DMAP and slow cooling (1 K/min), a distinct nucleation and supramolecular polymerization pathway emerge leading to the thermodynamically controlled Agg-3 with face-to-face stacking and 2D-morphology. Slow cooling with 5–10 % DMAP produces a mixture of Agg-2a and Agg-3. Computational modelling studies provide valuable insights into the internal order and the pathway complexity.  相似文献   
999.
This paper discusses a new model for galactic dark matter by combining an anisotropic pressure field corresponding to normal matter and a quintessence dark energy field having a characteristic parameter ω q such that -1 < wq < -\frac13-1<\omega_{q}< -\frac{1}{3}. Stable stellar orbits together with an attractive gravity exist only if ω q is extremely close to -\frac13-\frac{1}{3}, a result consistent with the special case studied by Guzman et al. (Rev. Mex. Fis. 49:303, 2003). Less exceptional forms of quintessence dark energy do not yield the desired stable orbits and are therefore unsuitable for modeling dark matter.  相似文献   
1000.
Here, we report two novel water‐stable amine‐functionalized MOFs, namely IISERP‐MOF26 ([NH2(CH3)2][Cu2O(Ad)(BDC)]?(H2O)2(DMA), 1 ) and IISERP‐MOF27 ([NH2(CH3)2]1/2[Zn4O(Ad)3(BDC)2]?(H2O)2(DMF)1/2, 2 ), which show selective CO2 capture capabilities. They are made by combining inexpensive and readily available terephthalic acid and N‐rich adenine with Cu and Zn, respectively. They possess 1D channels decorated by the free amine group from the adenine and the polarizing oxygen atoms from the terephthalate units. Even more, there are dimethyl ammonium (DMA+) cations in the pore rendering an electrostatic environment within the channels. The activated Cu‐ and Zn‐MOFs physisorb about 2.7 and 2.2 mmol g?1 of CO2, respectively, with high CO2/N2 and moderate CO2/CH4 selectivity. The calculated heat of adsorption (HOA=21–23 kJ mol?1) for the CO2 in both MOFs suggest optimal physical interactions which corroborate well with their facile on‐off cycling of CO2. Notably, both MOFs retain their crystallinity and porosity even after soaking in water for 24 hours as well as upon exposure to steam over 24 hours. The exceptional thermal and chemical stability, favorable CO2 uptakes and selectivity and low HOA make these MOFs promising sorbents for selective CO2 capture applications. However, the MOF′s low heat of adsorption despite having a highly CO2‐loving groups lined walls is quite intriguing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号