首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1734篇
  免费   86篇
  国内免费   8篇
化学   1241篇
晶体学   18篇
力学   42篇
数学   265篇
物理学   262篇
  2023年   16篇
  2022年   44篇
  2021年   37篇
  2020年   26篇
  2019年   28篇
  2018年   28篇
  2017年   21篇
  2016年   63篇
  2015年   79篇
  2014年   63篇
  2013年   90篇
  2012年   131篇
  2011年   143篇
  2010年   91篇
  2009年   63篇
  2008年   109篇
  2007年   117篇
  2006年   105篇
  2005年   78篇
  2004年   69篇
  2003年   59篇
  2002年   49篇
  2001年   26篇
  2000年   19篇
  1999年   15篇
  1998年   12篇
  1997年   16篇
  1996年   17篇
  1995年   7篇
  1994年   11篇
  1993年   13篇
  1992年   9篇
  1991年   5篇
  1990年   9篇
  1989年   7篇
  1988年   12篇
  1987年   12篇
  1986年   7篇
  1985年   7篇
  1984年   7篇
  1983年   4篇
  1982年   9篇
  1977年   5篇
  1975年   3篇
  1974年   5篇
  1961年   4篇
  1890年   7篇
  1885年   4篇
  1882年   5篇
  1879年   3篇
排序方式: 共有1828条查询结果,搜索用时 17 毫秒
51.
52.
The 1,5‐benzodiazepine ring system exhibits a puckered boat‐like conformation for all four title compounds [4‐(2‐hydroxyphenyl)‐2‐phenyl‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C21H18N2O, (I), 2‐(2,3‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (II), 2‐(3,4‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (III), and 2‐(2,5‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (IV)]. The stereochemical correlation of the two C6 aromatic groups with respect to the benzodiazepine ring system is pseudo‐equatorial–equatorial for compounds (I) (the phenyl group), (II) (the 2,3‐dimethoxyphenyl group) and (III) (the 3,4‐dimethoxyphenyl group), while for (IV) (the 2,5‐dimethoxyphenyl group) the system is pseudo‐axial–equatorial. An intramolecular hydrogen bond between the hydroxyl OH group and a benzodiazepine N atom is present for all four compounds and defines a six‐membered ring, whose geometry is constant across the series. Although the molecular structures are similar, the supramolecular packing is different; compounds (I) and (IV) form chains, while (II) forms dimeric units and (III) displays a layered structure. The packing seems to depend on at least two factors: (i) the nature of the atoms defining the hydrogen bond and (ii) the number of intermolecular interactions of the types O—H...O, N—H...O, N—H...π(arene) or C—H...π(arene).  相似文献   
53.
We have performed functional genomics of salt stress by overexpression of gene libraries in yeast and selection for salt tolerance. Thirty halotolerance genes were isolated from yeast, Arabidopsis, and sugar beet. The results indicate that Na+ transport (uptake, efflux, and compartmentation), sulfate activation, RNA processing, and protein synthesis are crucial for salt tolerance.  相似文献   
54.
The title compound, tetrakis(μ‐3,4,5‐triethoxy­benzoato‐κ2O:O′)­bis­[(pyrazine‐κN)­rhodium(II)](Rh—Rh), [Rh2(C13H17O5)4(C4H4N2)2], crystallizes on an inversion centre in the triclinic space group . The equatorial carboxyl­ate ligands bridge the two RhII atoms, giving a binuclear lantern‐like structure. The pyrazine mol­ecules occupy the two axial coordination sites. The phenyl rings are tilted by ca 10° with respect to the attached carboxyl­ate groups. The pyrazine planes have a torsion angle of ca 19° around the Rh—N bond with respect to the plane of the nearer carboxyl­ate group and are not coplanar with the Rh—Rh bond.  相似文献   
55.
The reaction of the dimer complex [{Ru(CO)3Cl2}2] with the ligands 4,6-dichloroquinoline-5,8-dione and 6-methoxybenzo[g]quinoline-5,10-dione in ethanol solution led to the neutral mononuclear complexes of general formula [Ru(CO)2Cl22-quinolinedione-N,O)]. The complexes were characterized by elemental analysis, IR and RMN spectroscopy, and the molecular structure of [Ru(CO)2Cl2(6-methoxybenzo[g]quinoline-5,10-dione)] was determined by single-crystal X-ray diffraction. The redox chemistry of ligands and complexes was investigated by cyclic voltammetry, and their potential antitumor activity was also evaluated.  相似文献   
56.
Starting from 6-(pN,N-dimethylanilinyl)fulvene (1a) or 6-(pentamethylphenyl)fulvene (1b) [1,2-di(cyclopentadienyl)-1,2-di(pN,N-dimethylaminophenyl)ethanediyl] titanium dichloride (2a) and [1,2-di(cyclopentadienyl)-1,2-bis(pentamethylphenyl)ethanediyl] titanium dichloride (2b) and their corresponding dithiocyanato complexes (3a, 3b) were synthesized. Titanocene 2b did not show a cytotoxic effect, but when 2a was tested against pig kidney carcinoma cells (LLC-PK) or human ovarian carcinoma cells (A2780/cp70) inhibitory concentrations (IC50) of 2.7 × 10−4 and 1.9 ×  10−4 M, respectively, were observed.  相似文献   
57.
Two 1,4‐diamine ligands were synthesized having 1,2‐bis(aminomethyl)‐cyclohexane and 1,2‐bis(aminomethyl)‐benzene structures. The two ligands have different electron density in the six‐membered ring: a cyclohexane versus a phenyl ring. The organic synthesis of the ligands was carried out by synthetic pathways of seven and four steps, respectively, starting from 1,2,3,6‐tetrahydrophthalic anhydride and diethyl phthalate. The coordination of platinum to these ligands afforded platinum(II) complexes which are analogue to the clinical drug cisplatin but form a seven‐membered chelate ring. The interaction of the platinum compounds with DNA was studied in order to know the relationship between the electron density of ligands and their capability to chelate DNA, by using three techniques: Circular Dichroism, Agarose Gel Electrophoresis and Atomic Force Microscopy. The degree of interaction of both compounds with DNA was slightly different, but both complexes showed a cisplatin‐like behaviour and are promising candidates to follow an extensive study of their cytotoxic activity.  相似文献   
58.
2-Acetoxy-3,4-di-O-acetyl-D-arabinal (6), similar to its D-xylo analogue 4, reacted with benzyl alcohol by the tin(IV) chloride-promoted glycosylation to produce optically active (S)-2-benzyloxy-2H-pyran-3(6H)-one (8a). The L-arabinal derivative (5) gave 9a, the dihydropyranone enantiomer of 8a. These results indicated that the configuration of the C-4 stereocenter in the starting glycal defines the configuration of the new chiral center in the resulting dihydropyranone. The influence of other catalysts (BF(3) or iodine) employed for the glycosylation on the optical purity of the dihydropyranone was studied. Enantiomerically pure dihydropyranones 8b and 9c were obtained using chiral alcohols ((R)- and (S)-2-octanol, respectively) as glycosylating agents. Compounds 8a,b and 9a,c proved to be reactive dienophiles in thermal and Lewis acid-promoted Diels-Alder reactions. The addition of 2,3-dimethylbutadiene, cyclopentadiene, and 1,3-cyclohexadiene to the beta-pyranones 8a,b led to the corresponding adducts 10a,b, 12a,b, and 16a,b as major products. Enantiomeric cycloadducts were synthesized from the alpha-pyranones 9a,c. The main products were formed by highly facial-diastereoselective addition of dienes to the pyranone ring, guided by the sterical hindrance of the alkoxy substituent of the C-2 stereocenter. As cycloadditions with cycloalkadienes were also highly endo diastereoselective, these reactions gave access to pure tetrahydrobenzopyranones that carry a multitude of stereogenic centers installed in a predictable way.  相似文献   
59.
New pulse sequences are presented for the measurement of the relaxation of deuterium double quantum, quadrupolar order, and transverse antiphase magnetization in (13)CH(2)D methyl groups of (15)N-, (13)C-labeled, fractionally deuterated proteins. Together with previously developed experiments for measuring deuterium longitudinal and transverse decay rates [Muhandiram, D. R.; Yamazaki, T.; Sykes, B. D.; Kay, L. E. J. Am. Chem. Soc. 1995, 117, 11536], these schemes allow measurement of the five unique decay constants of a single deuteron, providing an unprecedented opportunity to investigate side-chain dynamics in proteins. All five deuterium relaxation rates have been measured for deuterons in the methyl groups of the B1 immunoglobulin binding domain of peptostreptococcal protein L and the N-terminal SH3 domain from the protein drk. Since values of the spectral density function at only three different frequencies contribute to the five relaxation rates, the self-consistency of the relaxation data is readily established. Very good agreement is obtained between calculated parameters describing the amplitudes and time scales of motion when different subsets of the relaxation data are employed.  相似文献   
60.
The title compound, catena‐poly[[tetrakis(μ‐decanoato‐κ2O:O′)diruthenium(II,III)(RuRu)]‐μ‐octanesulfonato‐κ2O:O′], [Ru2(C10H19O2)4(C8H17O3S)], is an octane­sulfonate derivative of the mixed‐valence complex diruthenium tetradecanoate. The equatorial carboxyl­ate ligands are bidentate, bridging two Ru atoms to form a dinuclear structure. Each of the two independent dinuclear metal complexes in the asymmetric unit is located at an inversion centre. The octane­sulfonate anion bridges the two dinuclear units through axial coordination. The alkyl chains of the carboxyl­ate and sulfonate ligands are arranged in a parallel manner. The global structure can be seen as infinite chains of polar moieties separated by a double layer of non‐polar alkyl groups, without interdigitation of the alkyl chains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号