首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1719篇
  免费   86篇
  国内免费   8篇
化学   1227篇
晶体学   18篇
力学   42篇
数学   265篇
物理学   261篇
  2023年   12篇
  2022年   34篇
  2021年   37篇
  2020年   26篇
  2019年   28篇
  2018年   28篇
  2017年   21篇
  2016年   63篇
  2015年   79篇
  2014年   63篇
  2013年   90篇
  2012年   131篇
  2011年   143篇
  2010年   91篇
  2009年   63篇
  2008年   109篇
  2007年   117篇
  2006年   105篇
  2005年   78篇
  2004年   69篇
  2003年   59篇
  2002年   49篇
  2001年   26篇
  2000年   19篇
  1999年   15篇
  1998年   12篇
  1997年   16篇
  1996年   17篇
  1995年   7篇
  1994年   11篇
  1993年   13篇
  1992年   9篇
  1991年   5篇
  1990年   9篇
  1989年   7篇
  1988年   12篇
  1987年   12篇
  1986年   7篇
  1985年   7篇
  1984年   7篇
  1983年   4篇
  1982年   9篇
  1977年   5篇
  1975年   3篇
  1974年   5篇
  1961年   4篇
  1890年   7篇
  1885年   4篇
  1882年   5篇
  1879年   3篇
排序方式: 共有1813条查询结果,搜索用时 609 毫秒
101.
The synthesis, reactivity, and properties of boryl‐functionalized σ‐alkynyl and vinylidene rhodium complexes such as trans‐[RhCl(?C?CHBMes2)(PiPr3)2] and trans‐[Rh(C?CBMes2)(IMe)(PiPr3)2] are reported. An equilibrium was found to exist between rhodium vinylidene complexes and the corresponding hydrido σ‐alkynyl complexes in solution. The complex trans‐[Rh(C?CBMes2)(IMe)(PiPr3)2] (IMe=1,3‐dimethylimidazol‐2‐ylidene) was found to exhibit solvatochromism and can be quasireversibly oxidized and reduced electrochemically. Density functional calculations were performed to determine the reaction mechanism and to help rationalize the photophysical properties of trans‐[Rh(C?CBMes2)(IMe)(PiPr3)2].  相似文献   
102.
Nanostructured xerogels have been prepared by the freeze‐drying of hydrogels and aggregates formed by bolaamphiphilic L ‐valine derivatives after aging under different environmental conditions. A wide variety of shapes and sizes has been achieved by a simple methodology. These nanostructures have been studied by SEM and WAXD and a dramatic influence of structural flexibility on the kinetics of aggregation has been observed. Such flexibility and a modulation of the hydrophobic effect have shown a profound influence in the packing of these compounds and revealed a high degree of polymorphism.  相似文献   
103.
Bacteriocins are low molecular peptides with antimicrobial activity, which are of great interest as food bio-preservatives and for treating diseases caused by pathogenic bacteria. In this study, we present the characterization of bacteriocins produced by Lactobacillus plantarum LE5 and LE27 isolated from ensiled corn. Bacteriocins were purified through ammonium sulfate precipitation and double dialysis by using 12- and 1-kDa membranes. Bacteriocins showed activity against Listeria innocua, Listeria monocytogenes, and Enteroccocus faecalis. Molecular weight was estimated through Tricine-SDS-PAGE and overloading the gel onto Mueller-Hinton agar seeded with L. monocytogenes, showing an inhibition zone between 5 and 10 kDa. NanoLC-MS/MS analysis allowed the identification of UPF0291 protein (UniProtKB/Swiss-Prot Q88VI7), which is also presented in other lactic acid bacteria without assigned function. Ab initio modeling showed it has an α-helix-rich structure and a large positive-charged region. Bacteriocins were stable between 4 and 121 °C and pH 2 and 12, and the activity was inhibited by SDS and proteases. Mode of action assay suggests that the bacteriocin causes of target microorganism. Taken together, these results describe a possible new class IIa bacteriocin produced by L. plantarum, which has a wide stability to physicochemical conditions, and that could be used as an alternative for the control of foodborne diseases.  相似文献   
104.
We report an exhaustive conformational and electronic study on dopamine (DA) interacting with the D2 dopamine receptor (D2DR). For the first time, the complete surface of the conformational potential energy of the complex DA/D2DR is reported. Such a surface was obtained through the use of QM/MM calculations. A detailed study of the molecular interactions that stabilize and destabilize the different molecular complexes was carried out using two techniques: Quantum Theory of Atoms in Molecules computations and nuclear magnetic shielding constants calculations. A comparative study of the behavior of DA in the gas phase, aqueous solution, and in the active site of D2DR has allowed us to evaluate the degree of deformation suffered by the ligand and, therefore, analyze how rustic are the lock-key model and the induced fit theory in this case. Our results allow us to propose one of the conformations obtained as the “biologically relevant” conformation of DA when it is interacting with the D2DR.  相似文献   
105.
Realizing the full potential of oxide-supported single-atom metal catalysts (SACs) is key to successfully bridge the gap between the fields of homogeneous and heterogeneous catalysis. Here we show that the one-pot combination of Ru1/CeO2 and Rh1/CeO2 SACs enables a highly selective olefin isomerization-hydrosilylation tandem process, hitherto restricted to molecular catalysts in solution. Individually, monoatomic Ru and Rh sites show a remarkable reaction specificity for olefin double-bond migration and anti-Markovnikov α-olefin hydrosilylation, respectively. First-principles DFT calculations ascribe such selectivity to differences in the binding strength of the olefin substrate to the monoatomic metal centers. The single-pot cooperation of the two SACs allows the production of terminal organosilane compounds with high regio-selectivity (>95 %) even from industrially-relevant complex mixtures of terminal and internal olefins, alongside a straightforward catalyst recycling and reuse. These results demonstrate the significance of oxide-supported single-atom metal catalysts in tandem catalytic reactions, which are central for the intensification of chemical processes.  相似文献   
106.
Realizing the full potential of oxide‐supported single‐atom metal catalysts (SACs) is key to successfully bridge the gap between the fields of homogeneous and heterogeneous catalysis. Here we show that the one‐pot combination of Ru1/CeO2 and Rh1/CeO2 SACs enables a highly selective olefin isomerization‐hydrosilylation tandem process, hitherto restricted to molecular catalysts in solution. Individually, monoatomic Ru and Rh sites show a remarkable reaction specificity for olefin double‐bond migration and anti‐Markovnikov α‐olefin hydrosilylation, respectively. First‐principles DFT calculations ascribe such selectivity to differences in the binding strength of the olefin substrate to the monoatomic metal centers. The single‐pot cooperation of the two SACs allows the production of terminal organosilane compounds with high regio‐selectivity (>95 %) even from industrially‐relevant complex mixtures of terminal and internal olefins, alongside a straightforward catalyst recycling and reuse. These results demonstrate the significance of oxide‐supported single‐atom metal catalysts in tandem catalytic reactions, which are central for the intensification of chemical processes.  相似文献   
107.
So far, several studies have focused on the synthesis of metallic nanoparticles making use of extracts from the fruit of the plants from the genus Capsicum. However, as the fruit is the edible, and highly commercial, part of the plant, in this work we focused on the leaves, a part of the plant that is considered agro-industrial waste. The biological synthesis of gold (AuNPs) and silver (AgNPs) nanoparticles using aqueous extracts of root, stem and leaf of Capsicum chinense was evaluated, obtaining the best results with the leaf extract. Gold and silver nanoparticles synthesized using leaf extract (AuNPs-leaf and AgNPs-leaf, respectively) were characterized by UV-visible spectrophotometry (UV-Vis), Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection (FTIR-ATR), X-ray Photoelectron Spectroscopy (XPS), Ultra Hight Resolution Scanning Electron Microscopy coupled to Energy-Dispersive X-ray spectroscopy (UHR-SEM-EDX) and Transmission Electron Microscopy (TEM), and tested for their antioxidant and antimicrobial activities. In addition, different metabolites involved in the synthesis of nanoparticles were analyzed. We found that by the use of extracts derived from the leaf, we could generate stable and easy to synthesize AuNPs and AgNPs. The AuNPs-leaf were synthesized using microwave radiation, while the AgNPs-leaf were synthesized using UV light radiation. The antioxidant activity of the extract, determined by ABTS, showed a decrease of 44.7% and 60.7% after the synthesis of the AuNPs-leaf and AgNPs-leaf, respectively. After the AgNPs-leaf synthesis, the concentration of polyphenols, reducing sugars and amino acids decreased by 15.4%, 38.7% and 46.8% in the leaf extract, respectively, while after the AuNPs-leaf synthesis only reducing sugars decreased by 67.7%. These results suggest that these groups of molecules are implicated in the reduction/stabilization of the nanoparticles. Although the contribution of these compounds in the synthesis of the AuNPs-leaf and the AgNPs-leaf was different. Finally, the AgNPs-leaf inhibited the growth of S. aureus, E. coli, S. marcescens and E. faecalis. All of them are bacterial strains of clinical importance due to their fast antibiotic resistance development.  相似文献   
108.
A ferrofluid with 1,2-Benzenediol-coated iron oxide nanoparticles was synthesized and physicochemically analyzed. This colloidal system was prepared following the typical co-precipitation method, and superparamagnetic nanoparticles of 13.5 nm average diameter, 34 emu/g of magnetic saturation, and 285 K of blocking temperature were obtained. Additionally, the zeta potential showed a suitable colloidal stability for cancer therapy assays and the magneto-calorimetric trails determined a high power absorption density. In addition, the oxidative capability of the ferrofluid was corroborated by performing the Fenton reaction with methylene blue (MB) dissolved in water, where the ferrofluid was suitable for producing reactive oxygen species (ROS), and surprisingly a strong degradation of MB was also observed when it was combined with H2O2. The intracellular ROS production was qualitatively corroborated using the HT-29 human cell line, by detecting the fluorescent rise induced in 2,7-dichlorofluorescein diacetate. In other experiments, cell metabolic activity was measured, and no toxicity was observed, even with concentrations of up to 4 mg/mL of magnetic nanoparticles (MNPs). When the cells were treated with magnetic hyperthermia, 80% of cells were dead at 43 °C using 3 mg/mL of MNPs and applying a magnetic field of 530 kHz with 20 kA/m amplitude.  相似文献   
109.
Chagas disease (CD) can be accurately diagnosed by detecting Trypanosoma cruzi in patients’ blood using polymerase chain reaction (PCR). However, parasite-derived biomarkers are of great interest for the serological diagnosis and early evaluation of chemotherapeutic efficacy when PCR may fail, owing to a blood parasite load below the method’s limit of detection. Previously, we focused on the detection of specific anti-α-galactopyranosyl (α-Gal) antibodies in chronic CD (CCD) patients elicited by α-Gal glycotopes copiously expressed on insect-derived and mammal-dwelling infective parasite stages. Nevertheless, these stages also abundantly express cell surface glycosylphosphatidylinositol (GPI)-anchored glycoproteins and glycoinositolphospholipids (GIPLs) bearing nonreducing terminal β-galactofuranosyl (β-Galf) residues, which are equally foreign to humans and, therefore, highly immunogenic. Here we report that CCD patients’ sera react specifically with synthetic β-Galf-containing glycans. We took a reversed immunoglycomics approach that entailed: (a) Synthesis of T. cruzi GIPL-derived Galfβ1,3Manpα-(CH2)3SH (glycan G29SH) and Galfβ1,3Manpα1,2-[Galfβ1,3]Manpα-(CH2)3SH (glycan G32SH); and (b) preparation of neoglycoproteins NGP29b and NGP32b, and their evaluation in a chemiluminescent immunoassay. Receiver-operating characteristic analysis revealed that NGP32b can distinguish CCD sera from sera of healthy individuals with 85.3% sensitivity and 100% specificity. This suggests that Galfβ1,3Manpα1,2-[Galfβ1,3]Manpα is an immunodominant glycotope and that NGP32b could potentially be used as a novel CCD biomarker.  相似文献   
110.
The thermal degradation behaviour, in the absence of oxygen, of poly(p-methylstyrene) has been investigated. Monomer is the main product formed in the degradation process, together with different oligomers which have been identified and whose amounts have been determined. A reaction mechanism accounting for the formation of the degradation products, and similar to the mechanism established for polystyrene, is proposed. The main differences of the process comparing with polystyrene are the higher amount of monomer which is produced and the crosslinking structures which are formed at T < 400° C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号