首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   15篇
化学   187篇
晶体学   3篇
力学   1篇
数学   18篇
物理学   33篇
  2023年   9篇
  2022年   9篇
  2021年   4篇
  2020年   15篇
  2019年   13篇
  2018年   10篇
  2017年   8篇
  2016年   6篇
  2015年   5篇
  2014年   2篇
  2013年   10篇
  2012年   26篇
  2011年   25篇
  2010年   14篇
  2009年   10篇
  2008年   22篇
  2007年   16篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1993年   3篇
  1992年   1篇
  1988年   3篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1938年   1篇
排序方式: 共有242条查询结果,搜索用时 15 毫秒
131.
Several new air-stable, convenient to handle and easily synthesized Pd based PEPPSI (Pyridine Enhanced Precatalyst Preparation, Stabilization and Initiation) type precatalysts supported over N/O-functionalized N-heterocyclic carbenes (NHC) namely, trans-[1-(benzyl)-3-(N-t-butylacetamido)imidazol-2-ylidene]Pd(pyridine)Cl2 (), trans-[1-(2-hydroxy-cyclohexyl)-3-(benzyl)imidazol-2-ylidene]Pd(pyridine)Cl2 () and trans-[1-(o-methoxybenzyl)-3-(t-butyl)imidazol-2-ylidene]Pd(pyridine)Br2 (), have been designed. Specifically, the Pd-NHC complexes, , and , were conveniently synthesized from their respective imidazolium halide salts by the reaction with PdCl2 in pyridine in presence of K2CO3 as a base. A new imidazolium chloride salt, 1-(benzyl)-3-(N-t-butylacetamido)imidazolium chloride () was synthesized by the alkylation reaction of benzyl imidazole with N-t-butyl-2-chloroacetamide. The molecular structures of the imidazolium chloride salt, , and the Pd-NHC complexes, , and , have been determined by X-ray diffraction studies. The density functional theory studies of the , and complexes were carried out to in order to gain insight about their structure, bonding and the electronic properties. The nature of the NHC-metal bond in these complexes was examined using Charge Decomposition Analysis (CDA), which revealed that the N-heterocyclic carbene ligands are effective sigma-donors. In addition, the catalysis studies revealed that the Pd-NHC complexes, , and , are effective catalysts for the Suzuki-Miyaura type C-C cross-coupling reactions.  相似文献   
132.
133.
Predicting and designing systems with dynamic self-assembly properties in a spatiotemporal fashion is an important research area across disciplines ranging from understanding the fundamental non-equilibrium features of life to the fabrication of next-generation materials with life-like properties. Herein, we demonstrate a spatiotemporal dynamics pattern in the self-assembly behavior of a surfactant from an unorganized assembly, induced by adenosine triphosphate (ATP) and enzymes responsible for the degradation or conversion of ATP. We report the different behavior of two enzymes, alkaline phosphatase (ALP) and hexokinase (HK), towards adenosine triphosphate (ATP)-driven surfactant assembly, which also results in contrasting spatiotemporal dynamic assembly behavior. Here, ALP acts antagonistically, resulting in transient self-assemblies, whereas HK shows agonistic action with the ability to sustain the assemblies. This dynamic assembly behavior was then used to program the time-dependent emergence of a self-assembled structure in a two-dimensional space by maintaining concentration gradients of the enzymes and surfactant at different locations, demonstrating a new route for obtaining ‘spatial’ organizational adaptability in a self-organized system of interacting components for the incorporation of programmed functionality.

We have shown ATP-driven spatiotemporally distinct self-organization pattern of a surfactant in a two-dimensional space using enzymes, demonstrating a new route for obtaining ‘spatial’ organizational adaptability among interacting components.  相似文献   
134.
Das  Subhashis  Mahato  Sanat Kumar  Mondal  Argha  Kaslik  Eva 《Nonlinear dynamics》2023,111(9):8821-8836

To explore the impact of pest-control strategy on integrated pest management, a three-dimensional (3D) fractional- order slow–fast prey–predator model is introduced in this article. The prey community (assumed as pest) represents fast dynamics and two predators exhibit slow dynamical variables in the three-species interacting prey–predator model. In addition, common enemies of that pest are assumed as predators of two different species. Pest community causes serious damage to the economy. Fractional-order systems can better describe the real scenarios than classical-order dynamical systems, as they show previous history-dependent properties. We establish the ability of a fractional-order model with Caputo’s fractional derivative to capture the dynamics of this prey–predator system and analyze its qualitative properties. To investigate the importance of fractional-order dynamics on the behavior of the pest, we perform the local stability analysis of possible equilibrium points, using certain assumptions for different sets of parameters and reveal that the fractional-order exponent has an impact on the stability and the existence of Hopf bifurcations in the prey–predator model. Next, we discuss the existence, uniqueness and boundedness of the fractional-order system. We also observe diverse oscillatory behavior of different amplitude modulations including mixed mode oscillations (MMOs) for the fractional-order prey–predator model. Higher amplitude pest periods are interspersed with the outbreaks of small pest concentration. With the decrease of fractional-order exponent, small pest concentration increases with decaying long pest periods. We further notice that the reduced-order model is biologically significant and sensitive to the fractional-order exponent. Additionally, the dynamics captures adaptation that occurs over multiple timescales and we find consistent differences in the characteristics of the model for various fractional exponents.

  相似文献   
135.
The electrical, magnetic, and structural features of bismuth manganite (BM), e.g., BiMnO3, and bismuth ferrite (BF), e.g., BiFeO3, are reviewed. Induced multiferroicity and enhanced magnetoelectric coupling are required for various modern device applications. BM and BF were synthesized using standard high-temperature sintering and processes such as sol–gel, hydrothermal, or wet chemical methods combined with annealing. The size and morphology of the nanoscale particles were controlled, although they were usually inhomogeneous. BF exhibits structurally stable antiferromagnetic (AFM) and ferroelectric (FE) phases in wide temperature ranges. Ferromagnetic (FM) order was induced in a thick shell around the AFM core of the nanoscale BF particles, which was attributed to a size effect related to surface strains and disorder. BM exhibited both structurally stable and unstable phases. The BiMnO3, Bi12MnO20, and BiMn2O5 structures are nonferroelectric. The perovskite BiMnO3 form was synthesized under high hydrostatic pressure. FM order occurs in BM at low temperatures. Bi(MnFe)O3 solid solution samples exhibited competition between AFM and FM ordering. Doping can decrease the content of unavoidable secondary phases. Doping in the Bi ion sublattice can stabilize the crystal lattice owing to local strains caused by the difference in ionic radius between Bi and the dopant. Doping in the Fe and Mn sublattices affects the electrical features. The main achievement of substitution with tetra- and pentavalent ions is compensation of the oxygen vacancies. In turn, leakage current suppression enables switching of FE domains and polarization of the samples. A significant enhancement of magnetoelectric coupling was observed in composites formed from BF and other FE materials. The leakage currents can be diminished when an insulator polymer matrix blocks percolation. The potential applicability is related to enhanced magnetoelectric coupling. The constructed devices meet the size effect limitations for FE and FM ordering. Resistive switching suggests possible use in nonvolatile memories and gaseous sensors. The sensors can be used for hydrophones and for photovoltaic and photoluminescence applications, and they can be constructed from multiphase materials. Bulk multiferroic solid solutions, composites, and nanoheterostructures have already been tested for use in sensors, transducers, and read/write devices for technical purposes.  相似文献   
136.
The attainment of spatiotemporally inhomogeneous chemical and physical properties within a system is gaining attention across disciplines due to the resemblance to environmental and biological heterogeneity. Notably, the origin of natural pH gradients and how they have been incorporated in cellular systems is one of the most important questions in understanding the prebiotic origin of life. Herein, we have demonstrated a spatiotemporal pH gradient formation pattern on a hydrogel surface by employing two different enzymatic reactions, namely, the reactions of glucose oxidase (pH decreasing) and urease (pH increasing). We found here a generic pattern of spatiotemporal change in pH and proton transfer catalytic activity that was completely altered in a cationic gold nanoparticle containing hydrogel. In the absence of nanoparticles, the gradually generated macroscopic pH gradient slowly diminished with time, whereas the presence of nanoparticles helped to perpetuate the generated gradient effect. This behavior is due to the differential responsiveness of the interface of the cationic nanoparticle in temporally changing surroundings with increasing or decreasing pH or ionic contents. Moreover, the catalytic proton transfer ability of the nanoparticle showed a concerted kinetic response following the spatiotemporal pH dynamics in the gel matrix. Notably, this nanoparticle-driven spatiotemporally resolved gel matrix will find applicability in the area of the membrane-free generation and control of spatially segregated chemistry at the macroscopic scale.

This work reports perpetuating effect in enzymatically generated spatiotemporal pH gradient across a hydrogel in presence of cationic gold nanoparticle; showing a new route in spatially resolved chemistry in a membrane-free environment.  相似文献   
137.
In order to gain insight into the influence of the H+-accepting terminal ligand in high-valent oxidant mediated proton coupled electron transfer (PCET) reactions, the reactivity of a high valent nickel–fluoride complex [NiIII(F)(L)] ( 2 , L=N,N’-(2,6-dimethylphenyl)-2,6-pyridinecarboxamidate) with substituted phenols was explored. Analysis of kinetic data from these reactions (Evans–Polanyi, Hammett, and Marcus plots, and KIE measurements) and the formed products show that 2 reacted with electron rich phenols through a hydrogen atom transfer (HAT, or concerted PCET) mechanism and with electron poor phenols through a stepwise proton transfer/electron transfer (PT/ET) reaction mechanism. The analogous complexes [NiIII(Z)(L)] (Z=Cl, OCO2H, O2CCH3, ONO2) reacted with all phenols through a HAT mechanism. We explore the reason for a change in mechanism with the highly basic fluoride ligand in 2 . Complex 2 was also found to react one to two orders of magnitude faster than the corresponding analogous [NiIII(Z)(L)] complexes. This was ascribed to a high bond dissociation free energy value associated with H−F (135 kcal mol−1), which is postulated to be the product formed from PCET oxidation by 2 and is believed to be the driving force for the reaction. Our findings show that high-valent metal–fluoride complexes represent a class of highly reactive PCET oxidants.  相似文献   
138.
CO2 fixation and reduction to value‐added products is of utmost importance in the battle against rising CO2 levels in the Earth's atmosphere. An organoaluminum complex containing a formal aluminum double bond (dialumene), and thus an alkene equivalent, was used for the fixation and reduction of CO2. The CO2 fixation complex undergoes further reactivity in either the absence or presence of additional CO2, resulting in the first dialuminum carbonyl and carbonate complexes, respectively. Dialumene ( 1 ) can also be used in the catalytic reduction of CO2, providing selective formation of a formic acid equivalent via the dialuminum carbonate complex rather than a conventional aluminum–hydride‐based cycle. Not only are the CO2 reduction products of interest for C1 added value products, but the organoaluminum complexes isolated represent a significant step forward in the isolation of reactive intermediates proposed in many industrially relevant catalytic processes.  相似文献   
139.
We have synthesized ruthenium(II)– and osmium(II)–polypyridyl complexes ([M(bpy)2 L ]2+, in which M=OsII or RuII, bpy=2,2′‐bipyridyl, and L =4‐(2,2′‐bipyridinyl‐4‐yl)benzene‐1,2‐diol) and studied the interfacial electron‐transfer process on a TiO2 nanoparticle surface using femtosecond transient‐absorption spectroscopy. Ruthenium(II)‐ and osmium(II)‐based dyes have a similar molecular structure; nevertheless, we have observed quite different interfacial electron‐transfer dynamics (both forward and backward). In the case of the RuII/TiO2 system, single‐exponential electron injection takes place from photoexcited nonthermalized metal‐to‐ligand charge transfer (MLCT) states. However, in the case of the OsII/TiO2 system, electron injection takes place biexponentially from both nonthermalized and thermalized MLCT states (mainly 3MLCT states). Larger spin–orbit coupling for the heavier transition‐metal osmium, relative to that of ruthenium, accounts for the more efficient population of the 3MLCT states in the OsII‐based dye during the electron‐injection process that yields biexponential dynamics. Our results tend to suggest that appropriately designed OsII–polypyridyl dye can be a better sensitizer molecule relative to its RuII analogue not only due to much broader absorption in the visible region of the solar‐emission spectrum, but also on account of slower charge recombination.  相似文献   
140.
Several titanium isopropoxide complexes [N,N'-bis(2-oxo-3-R(1)-5-R(2)-phenylmethyl)-N,N'-bis(methylene-p-R(3)-C(6)H(4))-ethylenediamine]Ti(O(i)Pr)(2) [R(1) = t-Bu, R(2) = Me, R(3) = H (1b); R(1) = R(2) = t-Bu, R(3) = H, (2b); R(1) = R(2) = Cl, R(3) = H, (3b), R(1) = t-Bu, R(2) = Me, R(3) = Cl (4b); R(1) = R(2) = t-Bu, R(3) = Cl, (5b); R(1) = R(2) = R(3) = Cl, (6b)] supported over sterically demanding aryloxy based [N(2)O(2)]H(2) ligands have been designed as precatalysts for the ethylene polymerization. Specifically, the 1b-6b complexes, when treated with methylaluminoxane (MAO) under 88 ± 0.5 psi of ethylene at 30 °C for 3 h, produced polyethylene polymers of high molecular weight (M(w) = ca. 7.2-8.3 × 10(5) g mol(-1)) having broad molecular weight distribution (PDI = ca. 13.1-14.6). The 1b-6b complexes were conveniently synthesized from the direct reaction of the [N(2)O(2)]H(2) ligands, 1a-6a, with Ti(O(i)Pr)(4) in 69-86% yield.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号