首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   228篇
  免费   14篇
化学   187篇
晶体学   3篇
力学   1篇
数学   18篇
物理学   33篇
  2023年   9篇
  2022年   9篇
  2021年   4篇
  2020年   15篇
  2019年   13篇
  2018年   10篇
  2017年   8篇
  2016年   6篇
  2015年   5篇
  2014年   2篇
  2013年   10篇
  2012年   26篇
  2011年   25篇
  2010年   14篇
  2009年   10篇
  2008年   22篇
  2007年   16篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1993年   3篇
  1992年   1篇
  1988年   3篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1938年   1篇
排序方式: 共有242条查询结果,搜索用时 15 毫秒
121.
The X-ray crystal packing analyses of the sterically encumbered halogen-substituted benzene carboxylic acids 1-4 reveal a novel and unprecedented crystal packing in that the association of the carboxyl groups through O-H...O bonds results in the generation of a helix along the 41-screw axis. Such an organization of the acids is shown convincingly to be a result of the close packing, which exploits the weaker X...X and C-H...X interactions in conjunction with the stronger O-H...O hydrogen bonds. In contrast, the chloro- and bromo-substituted durene carboxylic acids 6 and 7 exhibit a pattern that is akin to tape/ribbon involving the centrosymmetric-dimer motif and X...X short intermolecular interactions. The structural investigations demonstrate the ability of the weaker interactions in modifying the supposedly "robust" centrosymmetric-dimer motif of the carboxyl groups in a decisive manner.  相似文献   
122.
Several new air-stable, convenient to handle and easily synthesized Pd based PEPPSI (Pyridine Enhanced Precatalyst Preparation, Stabilization and Initiation) type precatalysts supported over N/O-functionalized N-heterocyclic carbenes (NHC) namely, trans-[1-(benzyl)-3-(N-t-butylacetamido)imidazol-2-ylidene]Pd(pyridine)Cl2 (), trans-[1-(2-hydroxy-cyclohexyl)-3-(benzyl)imidazol-2-ylidene]Pd(pyridine)Cl2 () and trans-[1-(o-methoxybenzyl)-3-(t-butyl)imidazol-2-ylidene]Pd(pyridine)Br2 (), have been designed. Specifically, the Pd-NHC complexes, , and , were conveniently synthesized from their respective imidazolium halide salts by the reaction with PdCl2 in pyridine in presence of K2CO3 as a base. A new imidazolium chloride salt, 1-(benzyl)-3-(N-t-butylacetamido)imidazolium chloride () was synthesized by the alkylation reaction of benzyl imidazole with N-t-butyl-2-chloroacetamide. The molecular structures of the imidazolium chloride salt, , and the Pd-NHC complexes, , and , have been determined by X-ray diffraction studies. The density functional theory studies of the , and complexes were carried out to in order to gain insight about their structure, bonding and the electronic properties. The nature of the NHC-metal bond in these complexes was examined using Charge Decomposition Analysis (CDA), which revealed that the N-heterocyclic carbene ligands are effective sigma-donors. In addition, the catalysis studies revealed that the Pd-NHC complexes, , and , are effective catalysts for the Suzuki-Miyaura type C-C cross-coupling reactions.  相似文献   
123.
Das  Subhashis  Mahato  Sanat Kumar  Mondal  Argha  Kaslik  Eva 《Nonlinear dynamics》2023,111(9):8821-8836

To explore the impact of pest-control strategy on integrated pest management, a three-dimensional (3D) fractional- order slow–fast prey–predator model is introduced in this article. The prey community (assumed as pest) represents fast dynamics and two predators exhibit slow dynamical variables in the three-species interacting prey–predator model. In addition, common enemies of that pest are assumed as predators of two different species. Pest community causes serious damage to the economy. Fractional-order systems can better describe the real scenarios than classical-order dynamical systems, as they show previous history-dependent properties. We establish the ability of a fractional-order model with Caputo’s fractional derivative to capture the dynamics of this prey–predator system and analyze its qualitative properties. To investigate the importance of fractional-order dynamics on the behavior of the pest, we perform the local stability analysis of possible equilibrium points, using certain assumptions for different sets of parameters and reveal that the fractional-order exponent has an impact on the stability and the existence of Hopf bifurcations in the prey–predator model. Next, we discuss the existence, uniqueness and boundedness of the fractional-order system. We also observe diverse oscillatory behavior of different amplitude modulations including mixed mode oscillations (MMOs) for the fractional-order prey–predator model. Higher amplitude pest periods are interspersed with the outbreaks of small pest concentration. With the decrease of fractional-order exponent, small pest concentration increases with decaying long pest periods. We further notice that the reduced-order model is biologically significant and sensitive to the fractional-order exponent. Additionally, the dynamics captures adaptation that occurs over multiple timescales and we find consistent differences in the characteristics of the model for various fractional exponents.

  相似文献   
124.
The electrical, magnetic, and structural features of bismuth manganite (BM), e.g., BiMnO3, and bismuth ferrite (BF), e.g., BiFeO3, are reviewed. Induced multiferroicity and enhanced magnetoelectric coupling are required for various modern device applications. BM and BF were synthesized using standard high-temperature sintering and processes such as sol–gel, hydrothermal, or wet chemical methods combined with annealing. The size and morphology of the nanoscale particles were controlled, although they were usually inhomogeneous. BF exhibits structurally stable antiferromagnetic (AFM) and ferroelectric (FE) phases in wide temperature ranges. Ferromagnetic (FM) order was induced in a thick shell around the AFM core of the nanoscale BF particles, which was attributed to a size effect related to surface strains and disorder. BM exhibited both structurally stable and unstable phases. The BiMnO3, Bi12MnO20, and BiMn2O5 structures are nonferroelectric. The perovskite BiMnO3 form was synthesized under high hydrostatic pressure. FM order occurs in BM at low temperatures. Bi(MnFe)O3 solid solution samples exhibited competition between AFM and FM ordering. Doping can decrease the content of unavoidable secondary phases. Doping in the Bi ion sublattice can stabilize the crystal lattice owing to local strains caused by the difference in ionic radius between Bi and the dopant. Doping in the Fe and Mn sublattices affects the electrical features. The main achievement of substitution with tetra- and pentavalent ions is compensation of the oxygen vacancies. In turn, leakage current suppression enables switching of FE domains and polarization of the samples. A significant enhancement of magnetoelectric coupling was observed in composites formed from BF and other FE materials. The leakage currents can be diminished when an insulator polymer matrix blocks percolation. The potential applicability is related to enhanced magnetoelectric coupling. The constructed devices meet the size effect limitations for FE and FM ordering. Resistive switching suggests possible use in nonvolatile memories and gaseous sensors. The sensors can be used for hydrophones and for photovoltaic and photoluminescence applications, and they can be constructed from multiphase materials. Bulk multiferroic solid solutions, composites, and nanoheterostructures have already been tested for use in sensors, transducers, and read/write devices for technical purposes.  相似文献   
125.
126.
Predicting and designing systems with dynamic self-assembly properties in a spatiotemporal fashion is an important research area across disciplines ranging from understanding the fundamental non-equilibrium features of life to the fabrication of next-generation materials with life-like properties. Herein, we demonstrate a spatiotemporal dynamics pattern in the self-assembly behavior of a surfactant from an unorganized assembly, induced by adenosine triphosphate (ATP) and enzymes responsible for the degradation or conversion of ATP. We report the different behavior of two enzymes, alkaline phosphatase (ALP) and hexokinase (HK), towards adenosine triphosphate (ATP)-driven surfactant assembly, which also results in contrasting spatiotemporal dynamic assembly behavior. Here, ALP acts antagonistically, resulting in transient self-assemblies, whereas HK shows agonistic action with the ability to sustain the assemblies. This dynamic assembly behavior was then used to program the time-dependent emergence of a self-assembled structure in a two-dimensional space by maintaining concentration gradients of the enzymes and surfactant at different locations, demonstrating a new route for obtaining ‘spatial’ organizational adaptability in a self-organized system of interacting components for the incorporation of programmed functionality.

We have shown ATP-driven spatiotemporally distinct self-organization pattern of a surfactant in a two-dimensional space using enzymes, demonstrating a new route for obtaining ‘spatial’ organizational adaptability among interacting components.  相似文献   
127.
The attainment of spatiotemporally inhomogeneous chemical and physical properties within a system is gaining attention across disciplines due to the resemblance to environmental and biological heterogeneity. Notably, the origin of natural pH gradients and how they have been incorporated in cellular systems is one of the most important questions in understanding the prebiotic origin of life. Herein, we have demonstrated a spatiotemporal pH gradient formation pattern on a hydrogel surface by employing two different enzymatic reactions, namely, the reactions of glucose oxidase (pH decreasing) and urease (pH increasing). We found here a generic pattern of spatiotemporal change in pH and proton transfer catalytic activity that was completely altered in a cationic gold nanoparticle containing hydrogel. In the absence of nanoparticles, the gradually generated macroscopic pH gradient slowly diminished with time, whereas the presence of nanoparticles helped to perpetuate the generated gradient effect. This behavior is due to the differential responsiveness of the interface of the cationic nanoparticle in temporally changing surroundings with increasing or decreasing pH or ionic contents. Moreover, the catalytic proton transfer ability of the nanoparticle showed a concerted kinetic response following the spatiotemporal pH dynamics in the gel matrix. Notably, this nanoparticle-driven spatiotemporally resolved gel matrix will find applicability in the area of the membrane-free generation and control of spatially segregated chemistry at the macroscopic scale.

This work reports perpetuating effect in enzymatically generated spatiotemporal pH gradient across a hydrogel in presence of cationic gold nanoparticle; showing a new route in spatially resolved chemistry in a membrane-free environment.  相似文献   
128.
A new rhodamine-based receptor, derivatized with an additional fluorophore (quinoline), was synthesized for selective recognition of Hg(2+) and Cr(3+) in an acetonitrile/HEPES buffer medium of pH 7.3. This reagent could be used as a dual probe and allowed detection of these two ions by monitoring changes in absorption and the fluorescence spectral pattern. In both instances, the extent of the changes was significant enough to allow visual detection. More importantly, the receptor molecule could be used as an imaging reagent for detection of Hg(2+) and Cr(3+) uptake in live human cancer cells (MCF7) using laser confocal microscopic studies. Unlike Hg(ClO(4))(2) or Hg(NO(3))(2) salts, HgCl(2) or HgI(2) failed to induce any visually detectable change in color or fluorescence upon interaction with L(1) under identical experimental conditions. Presumably, the higher covalent nature of Hg(II) in HgCl(2) or HgI(2) accounts for its lower acidity and its inability to open up the spirolactam ring of the reagent L(1). The issue has been addressed on the basis of the single-crystal X-ray structures of L(1)·HgX(2) (X(-) = Cl(-) or I(-)) and results from other spectral studies.  相似文献   
129.
An umpolung approach for the synthesis of unsymmetrical disulfides via sulfenium ion is reported. In situ generated electrophilic sulfenium ion from electron‐rich thiols reacted with second thiols to yield unsymmetrical disulfides. Using an iodine catalyst and 4‐dimethylaminopyridine (DMAP)/water as promoter, the target syntheses were achieved in one pot under aerobic condition.  相似文献   
130.
Herein we report the use of a hue parameter of HSV (Hue, Saturation and Value) color space—in combination with chromaticity color coordinates—for exploring the complexation‐induced luminescence color changes, ranging from blue to green to yellow to white, from a non‐luminescent Fe‐doped ZnS quantum dot (QD). Importantly, the surface complexation reaction helped a presynthesized non‐luminescent Fe‐doped ZnS QD to glow with different luminescence colors (such as blue, cyan, green, greenish‐yellow, yellow) by virtue of the formation of various luminescent inorganic complexes (using different external organic ligands), while the simultaneous blue‐ and yellow‐emitting complex formation on the surface of non‐luminescent Fe‐doped ZnS QD led to the generation of white light emission, with a hue mean value of 85 and a chromaticity of (0.28,0.33). Furthermore, the surface complexation‐assisted incorporation of luminescence properties to a non‐luminescent QD not only overcomes their restricted luminescence‐based applications such as light‐emitting, biological and sensing applications but also bring newer avenues towards unravelling the surface chemistry between QDs and inorganic complexes and the advantage of having an inorganic complex with QD for their aforementioned useful applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号