首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14975篇
  免费   543篇
  国内免费   42篇
化学   10157篇
晶体学   231篇
力学   472篇
综合类   1篇
数学   1151篇
物理学   3548篇
  2024年   66篇
  2023年   172篇
  2022年   441篇
  2021年   430篇
  2020年   466篇
  2019年   526篇
  2018年   491篇
  2017年   465篇
  2016年   679篇
  2015年   477篇
  2014年   768篇
  2013年   1275篇
  2012年   1127篇
  2011年   1166篇
  2010年   770篇
  2009年   597篇
  2008年   729篇
  2007年   730篇
  2006年   571篇
  2005年   503篇
  2004年   383篇
  2003年   319篇
  2002年   260篇
  2001年   158篇
  2000年   131篇
  1999年   101篇
  1998年   74篇
  1997年   99篇
  1996年   98篇
  1995年   73篇
  1994年   72篇
  1993年   94篇
  1992年   99篇
  1991年   80篇
  1990年   74篇
  1989年   74篇
  1988年   50篇
  1987年   50篇
  1986年   45篇
  1985年   67篇
  1984年   67篇
  1983年   55篇
  1982年   51篇
  1981年   40篇
  1980年   47篇
  1979年   64篇
  1978年   50篇
  1977年   57篇
  1976年   42篇
  1975年   37篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
261.
Considering the application potentials of organic materials possessing both conducting and ferromagnetic functions in various electronic devices, an attempt was made to prepare conducting polyaniline (PANI) layered magnetic nano composite polymer particles. Two routes were used to modify magnetic Fe3O4 core particles. In one route, seeded emulsion polymerization of methyl methacrylate (MMA) was carried out in presence of nano‐sized Fe3O4 core particles. In another route, cross‐linker ethyleneglycol dimethacrylate (EGDM) was used in addition to MMA. The modified composite particles were named as Fe3O4/PMMA and Fe3O4/P(MMA‐EGDM), respectively. Finally, seeded chemical oxidative polymerization of aniline was carried out in the presence of Fe3O4/PMMA and Fe3O4/P(MMA‐EGDM) composite seed particles to obtain Fe3O4/PMMA/PANI and Fe3O4/P(MMA‐EGDM)/PANI composite polymer particles. The modification of Fe3O4 core particles was confirmed by electron micrographs, FTIR, UV–visible spectra, X‐ray photoelectron spectra, X‐ray diffraction pattern and thermogravimetric analyses. A comparative study showed that crosslinking of intermediate shell improved the magnetic susceptibility and electrical conductivity of PANI layered magnetic nano composite particles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
262.
As therapeutic monoclonal antibodies (mAbs) become a major focus in biotechnology and a source of the next-generation drugs, new analytical methods or combination methods are needed for monitoring changes in higher order structure and effects of post-translational modifications. The complexity of these molecules and their vulnerability to structural change provide a serious challenge. We describe here the use of complementary mass spectrometry methods that not only characterize mutant mAbs but also may provide a general framework for characterizing higher order structure of other protein therapeutics and biosimilars. To frame the challenge, we selected members of the IgG2 subclass that have distinct disulfide isomeric structures as a model to evaluate an overall approach that uses ion mobility, top-down MS sequencing, and protein footprinting in the form of fast photochemical oxidation of proteins (FPOP). These three methods are rapid, sensitive, respond to subtle changes in conformation of Cys?→?Ser mutants of an IgG2, each representing a single disulfide isoform, and may be used in series to probe higher order structure. The outcome suggests that this approach of using various methods in combination can assist the development and quality control of protein therapeutics.   相似文献   
263.
264.
Nanoparticles of a regioregular and soluble polythiophene were fabricated by mini-emulsion technique. The fabricated nanoparticles were characterized by optical spectroscopy and dynamic light scattering. The fluorescence quenching of these fabricated nanoparticles with 2,4-dinitrotolune (DNT) in aqueous and organic solutions was investigated. Significant fluorescence quenching was observed. The Stern-Volmer constants were determined to be higher than that of the bulk polymer in solution, indicating that the nanoparticles provide better sensitivity in DNT sensing. Strong two-photon-induced fluorescence was measured from these nanoparticles.  相似文献   
265.
Polymers synthesized from naturally derived monomers are valuable since they decrease the reliance on petroleum based feed stocks. Cashew nut shell oil (CNSL) is a side-product from processing of edible Cashew nuts of Annacardium occidentale. One of the major components of CNSL is cardanol, which is a phenol derivative having an unsaturated pentadecyl substituent in the ‘meta’ position with varying amount of unsaturation (no double bonds to three double bonds). The substituent in the meta position can also be hydrogenated to yield completely saturated hydrogenated cardanol. Cardanol can be utilized to stabilize the dispersions of oil in water and vice versa since it displays amphiphilic behavior owing to the phenolic head and the C15 aliphatic tail. Here we report the horseradish peroxidase (HRP) catalyzed polymerization of cardanol at oil water interface to obtain polycardanol microcapsules. A synthetic analogue of hydrogenated cardanol, 3-pentadecylphenol (3PDP), was also oxidatively polymerized at the oil-water interface to obtain Poly(3-pentadecylphenol) microcapsules.  相似文献   
266.
The use of carboxypeptidase for sequence determination is attractive because of its technical simplicity. In chemical methods all molecules of a peptide are made to go through a degradation cycle before a new cycle is started. In the enzymatic degradation of a protein, the order of the amino acid residues is not necessarily determined in a stepwise fashion but rather from the rate at which the amino acids appear in the digest, i.e., an amino acid appearing faster than another presumably precedes it in the sequence. Under favorable circumstances the rate of appearance of the amino acids released during digestion give sufficient evidence for the C-terminal sequence to be deduced. The present work pertains to a study on the use of immobilized carboxypeptidase A columns for sequential analyses.  相似文献   
267.

A series of terbutaline sulphate drug incorporated polyvinyl alcohol (PVA) matrix films were produced by the solvent evaporation method. The effect of xanthan gum and plasticizers (propylene glycol and dibutyl phthalate) on the rate and amount of drug diffusion from PVA membrane across the hydrated cellophane membrane has been evaluated, using an open glass diffusion‐tube. The obtained films were clear, smooth and flexible having sufficient mechanical strength. The mechanical performance of the dry PVA films with xanthan gum and plasticizers were also ascertained. Polyvinyl alcohol‐xanthan gum blends showed a high rate of drug release compared to that of polyvinyl alcohol film alone. Among the two plasticizers employed, propylene glycol showed better permeability. Among different formulations studied, the formulation PVA/xanthan gum/propylene glycol (F7) was found to be an optimized composition for efficient transdermal delivery of the model drug, terbutaline sulphate. The mechanism of drug diffusion has been evaluated using the Peppas model. Stability studies carried out on polymer‐drug formulations revealed that the drug is stable at 40°C and 75% RH for a period of 6 weeks.  相似文献   
268.

Free radical copolymerization of N‐vinyl‐2‐pyrrolidone with 2‐ethoxyethyl methacrylates was carried out with 2,2′‐azobisisobutyronotrile as an initiator in 1,4‐dioxane. The resulting copolymer was characterized by FTIR, H1‐NMR and C13‐NMR spectroscopic techniques thermal properties of copolymer were determined by DSC and TGA. The reactivity ratios of the monomers were computed by the Fineman‐Rose (F‐R), Kelen‐Tudos (K‐T) and extended Kelen‐Tudos (EK‐T) method at lower conversion, using the data obtained from both FTIR and elemental analysis studies; the results are in good agreement with each other. The average reactivity ratio, Alfrey‐Price Q and e values were found to be r 1=0.769, r 2=0.266 and Q 1=0.0859, e 1=0.4508, respectively for NVP/EOEMA copolymer. The distribution of monomer sequence along the copolymer chain was calculated using a statistical method based on obtained reactivity ratio. The number average molecular weight and polydispersity were determined by GPC.  相似文献   
269.
In this paper, 1,2-bis(2-acetamido-6-pyridyl)ethane, receptor 1, having an ethylene spacer is reported to recognise dicarboxylic acids. The binding study in the solution phase is carried out using 1H NMR (1:1) and UV–vis experiments and in the solid phase by single-crystal X-ray analysis. In 1H NMR, the downfield shifts of specific amide protons of receptor 1 in 1:1 complexes of receptor and guest diacids, and in the UV–vis experiment, the appearance of an isosbestic point as well as significant binding constants are observed, which thus unambiguously support the complexation of receptor 1 with dicarboxylic acids in solution. Receptor 2, simple 2-acetamido-6-methylpyridine, has lower binding constants than receptor 1 due to cooperative binding of two pyridine amide groups with two acid groups of diacids. In the solid phase, the ditopic receptor 1 shows a grid-like polymeric hydrogen-bonded network that changes to a polymeric wave-like 1:1 anti-perpendicular network instead of the synsyn polymeric 1:1 (Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett. 2005 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 46, 7187–7191), antianti polymeric 1:1 (Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem. 2006 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 18, 571–574; Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm. 2008, 10, 507–517; Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron 2008, 64, 6426–6433), synsyn 2:2 (Karle, I.L.; Ranganathan, D.; Haridas, V. J. Am. Chem. Soc. 1997 (a) Garcia-Tellado, F., Goswami, S., Chang, S.K., Geib, S.J. and Hamilton, A.D. 1990. J. Am. Chem. Soc., 112: 73937394. (b) Geib, S.J.; Vicent, C.; Fan, E.; Hamilton, A.D. Angew. Chem. Int. Ed. Engl.1993, 32, 119–121. (c) Garcia-Tellado, F.; Geib, S.J.; Goswami, S.; Hamilton, A.D. J. Am. Chem. Soc.1991, 113, 9265–9269. (d) Karle, I.L.; Ranganathan, D.; Haridas, V. J. Am. Chem. Soc.1997, 119, 2777–2783. (e) Moore, G.; Papamicaël, C.; Levacher, V.; Bourguignon, J.; Dupas, G. Tetrahedron2004, 60, 4197–4204. (f) Korendovych, I.V.; Cho, M.; Makhlynets, O.V.; Butler, P.L.; Staples, R.J.; Rybak-Akimova, E.V. J. Org. Chem.2008, 73, 4771–4782. (g) Ghosh, K.; Masanta, G.; Fröhlich, R.; Petsalakis, I.D.; Theodorakopoulos, G. J. Phys. Chem. B2009, 113, 7800–7809 [Google Scholar], 119, 2777–2783) or topbottom-bound 1:1 (Garcia-Tellado, F.; Goswami, S.; Chang, S.K.; Geib, S.J.; Hamilton, A.D. J. Am. Chem. Soc. 1990 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 112, 7393–7394) co-crystals.

  相似文献   
270.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号