首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   6篇
化学   90篇
晶体学   3篇
力学   1篇
数学   18篇
物理学   38篇
  2022年   6篇
  2021年   7篇
  2020年   4篇
  2019年   8篇
  2018年   3篇
  2017年   3篇
  2016年   8篇
  2015年   4篇
  2014年   12篇
  2013年   11篇
  2012年   15篇
  2011年   7篇
  2010年   6篇
  2009年   10篇
  2008年   3篇
  2007年   4篇
  2006年   7篇
  2005年   2篇
  2004年   3篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1978年   1篇
  1969年   1篇
  1967年   2篇
排序方式: 共有150条查询结果,搜索用时 15 毫秒
81.
Ni2MnGa(100) single crystal studied using low energy electron diffraction (LEED) and ultraviolet photoemission spectroscopy (UPS) exhibits interesting modification of the surface properties that are mainly influenced by surface composition as well as intrinsic effects. In the martensite phase, the LEED spot profiles show presence of an incommensurate modulation for the stoichiometric surface. In contrast, a commensurate modulation is observed for Mn-excess Ni–Mn–Ga surface. A pre-martensite phase is identified at the surface. Both the surface martensitic and pre-martensitic transition temperatures decrease as the Mn content increases. The UPS spectra in the austenite phase exhibit systematic change in shape as a function of surface composition that can be related to changes in the hybridization between Ni and Mn 3d states. The spectra in the martensite phase exhibit interesting modifications near the Fermi level, which has been compared to density of states calculated for a modulated structure by ab-initio density functional theory. Intrinsic surface properties dissimilar from the bulk are enhanced hysteresis width of the martensite transition and increased pre-martensitic transition temperature.  相似文献   
82.
83.
We present alternative proofs of some of Ramanujan’s theta function identities associated with the modular equations of composite degree 15. Along the way we also find some new theta-function identities. We also give simple proofs of his modular equations of degree 15.  相似文献   
84.
We here show that the electronic properties and the chemical reactivities of the internucleotidic phosphates in the heptameric ssRNAs are dissimilar in a sequence-specific manner because of their non-identical microenvironments, in contrast with the corresponding isosequential ssDNAs. This has been evidenced by monitoring the delta H8(G) shifts upon pH-dependent ionization (pK(a1)) of the central 9-guaninyl (G) to the 9-guanylate ion (G-), and its electrostatic effect on each of the internucleotidic phosphate anions, as measured from the resultant delta 31P shifts (pKa2) in the isosequential heptameric ssRNAs vis-à-vis ssDNAs: [d/r(5'-Cp1Ap2Q1p3Gp4Q2p5Ap6C-3'): Q1 = Q2 = A (5a/5b) or C (8a/8b), Q(1) = A, Q(2) = C (6a/6b), Q1 = C, Q2 = A (7a/7b)]. These oligos with single ionizable G in the centre are chosen because of the fact that the pseudoaromatic character of G can be easily modulated in a pH-dependent manner by its transformation to G- (the 2'-OH to 2-O- ionization effect is not detectable below pH 11.6 as evident from the N(1-Me)-G analog), thereby modulating/titrating the nature of the electrostatic interactions of G to G- with the phosphates, which therefore constitute simple models to interrogate how the variable pseudoaromatic characters of nucleobases under different sequence context (J. Am. Chem. Soc., 2004, 126, 8674-8681) can actually influence the reactivity of the internucleotide phosphates as a result of modulation of sequence context-specific electrostatic interactions. In order to better understand the impact of the electrostatic effect of the G to G- on the tunability of the electronic character of internucleotidic phosphates in the heptameric ssRNAs 5b, 6b, 7b and 8b, we have also performed their alkaline hydrolysis at pH 12.5 at 20 degrees C, and have identified the preferences of the cleavage sites at various phosphates, which are p2, p3 and p4 (Fig.3). The results of these alkaline hydrolysis studies have been compared with the hydrolysis of analogous N(1-Me)-G heptameric ssRNA sequences 5c, 7c and 8c under identical conditions in order to establish the role of the electrostatic effect of the 9-guanylate ion (and the 2'-OH to 2-O- ionization) on the internucleotidic phosphate. It turned out that the relative alkaline hydrolysis rate at those particular phosphates (p2, p3 and p4) in the N(1-Me)-G heptamers was reduced from 16-78% compared to those in the native counterparts [Fig. 4, and ESI 2 (Fig. S11)]. Thus, these physico-chemical studies have shown that those p2, p3 and p4 phosphates in the native heptameric RNAs, which show pKa2 as well as more deshielding (owing to weaker 31P screening) in the alkaline pH compared to those at the neutral pH, are more prone to the alkaline hydrolysis because of their relatively enhanced electrophilic character resulting from weaker 31P screening. This screening effect originates as a result of the systematic charge repulsion effect between the electron cloud in the outermost orbitals of phosphorus and the central guanylate ion, leading to delocalization of the phosphorus p(pi) charge into its dpi orbitals. It is thus likely that, just as in the non-enzymatic hydrolysis, the enzymatic hydrolysis of a specific phosphate in RNA by general base-catalysis in RNA-cleaving proteins (RNase A, RNA phosphodiesterase or nuclease) can potentially be electrostatically influenced by tuning the transient charge on the nucleobase in the steric proximity or as a result of specific sequence context owing to nearest-neighbor interactions.  相似文献   
85.
Several strategies have been adopted to design an artificial light‐harvesting system in which light energy is captured by peripheral chromophores and it is subsequently transferred to the core via energy transfer. A composite of carbon dots and dye‐encapsulated BSA‐protein‐capped gold nanoclusters (AuNCs) has been developed for efficient light harvesting and white light generation. Carbon dots (C‐dots) act as donor and AuNCs capped with BSA protein act as acceptor. Analysis reveals that energy transfer increases from 63 % to 83 % in presence of coumarin dye (C153), which enhances the cascade energy transfer from carbon dots to AuNCs. Bright white light emission with a quantum yield of 19 % under the 375 nm excitation wavelength is achieved by changing the ratio of components. Interesting findings reveal that the efficient energy transfer in carbon‐dot–metal‐cluster nanocomposites may open up new possibilities in designing artificial light harvesting systems for future applications.  相似文献   
86.
87.
Effect of Ag doping on the crystallization kinetics of amorphous Se80.5Bi1.5Te18?yAgy (for y = 0, 1.0, 1.5, and 2.0 at.%) glassy alloys has been studied by differential scanning calorimetry (DSC). The DSC curves recorded at four different heating rates are analyzed to determine the transition temperature, activation energy, thermal stability, glass forming ability, and dimensionality of growth during phase transformation. Present study shows that the thermal stability and the glass-forming ability increase with an increase in the Ag content which is in agreement with the earlier studies. Our results show that Se80.5Bi1.5Te16Ag2 composition is thermally more stable and has a little tendency to crystallize in comparison to other compositions under study. The increase in thermal stability with increasing Ag concentration is attributed to an increase in the cohesive energy.  相似文献   
88.
Although several in vivo blood glucose measurement studies have been performed by different research groups using near-infrared (NIR) absorption and Raman spectroscopic techniques, prospective prediction has proven to be a challenging problem. An important issue in this case is the demonstration of causality of glucose concentration to the spectral information, especially as the intrinsic glucose signal is smaller compared with that of the other analytes in the blood–tissue matrix. Furthermore, time-dependent physiological processes make the relation between glucose concentration and spectral data more complex. In this article, chance correlations in Raman spectroscopy-based calibration model for glucose measurements are investigated for both in vitro (physical tissue models) and in vivo (animal model and human subject) cases. Different spurious glucose concentration profiles are assigned to the Raman spectra acquired from physical tissue models, where the glucose concentration is intentionally held constant. Analogous concentration profiles, in addition to the true concentration profile, are also assigned to the datasets acquired from an animal model during a glucose clamping study as well as a human subject during an oral glucose tolerance test. We demonstrate that the spurious concentration profile-based calibration models are unable to provide prospective predictions, in contrast to those based on actual concentration profiles, especially for the physical tissue models. We also show that chance correlations incorporated by the calibration models are significantly less in Raman as compared to NIR absorption spectroscopy, even for the in vivo studies. Finally, our results suggest that the incorporation of chance correlations for in vivo cases can be largely attributed to the uncontrolled physiological sources of variations. Such uncontrolled physiological variations could either be intrinsic to the subject or stem from changes in the measurement conditions.  相似文献   
89.
IEC information received through VHF RB measurements has been analyzed over the anomaly crest region of Guwahati (92° E, 26° N, 15° N geo.mag) along with a few low/low-mid latitude observations for understanding the roles of influx of plasma to anomaly crest regions, from equatorward and poleward processes during geomagnetically disturbed situations. The conditions leading to inflow of plasma to equatorial anomaly crest region or inhibition of such processes have been described in the paper through systematic analysis of disturbed day (free from sudden commencements) ionospheric electron content (IEC) variations at different temporal situtions. The storm-induced effects in relation to the development of the above conditions have also been examined for moderate and moderately severe isolated storm cases. Finally the paper deals with a few severe storms. The storm-triggered IEC features indicate inhibition or suppression of plasma dumping process at anomaly crests, through equatorial anomaly phenomenon. During winter and many equinoxial storms, the compression effect pushes this station away from the region where effective dumping of ionization from the equator is expected. Diffusion of plasma from the polar region to the crest area has also been observed through penetration of the eastward electric field during many disturbed situations. Depletion of noontime density during winter and equinoxial months and enhancement of the same during summer geomagnetically active situations are examined through anomaly compression (or inhibition) process as well as plasma replenishment through the equatorward wind.Published from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 39, No. 3, pp. 263–275, March, 1996.  相似文献   
90.
Time shaping of ultra-short visible pulses has been performed using a specially designed acousto-optic programmable dispersive filter of 50% efficiency at the output of a two-stage non-collinear optical parametric amplifier. The set-up is compact and reliable. It provides a tunable shaped source in the visible with unique features: a 4-ps shaping window with preserved tunability over 500–650 nm, and pulses as short as 30 fs. Several-μJ output energy is easily obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号