首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1791篇
  免费   50篇
  国内免费   10篇
化学   1279篇
晶体学   21篇
力学   70篇
数学   110篇
物理学   371篇
  2024年   10篇
  2023年   20篇
  2022年   33篇
  2021年   38篇
  2020年   35篇
  2019年   62篇
  2018年   38篇
  2017年   35篇
  2016年   64篇
  2015年   32篇
  2014年   50篇
  2013年   144篇
  2012年   83篇
  2011年   155篇
  2010年   77篇
  2009年   49篇
  2008年   67篇
  2007年   71篇
  2006年   65篇
  2005年   46篇
  2004年   53篇
  2003年   40篇
  2002年   47篇
  2001年   27篇
  2000年   24篇
  1999年   11篇
  1997年   11篇
  1996年   16篇
  1995年   10篇
  1994年   13篇
  1993年   15篇
  1992年   16篇
  1988年   19篇
  1987年   21篇
  1986年   13篇
  1985年   19篇
  1984年   11篇
  1983年   15篇
  1980年   20篇
  1979年   11篇
  1978年   15篇
  1976年   9篇
  1975年   10篇
  1966年   25篇
  1965年   18篇
  1964年   14篇
  1963年   16篇
  1962年   43篇
  1961年   11篇
  1960年   12篇
排序方式: 共有1851条查询结果,搜索用时 0 毫秒
71.
Pressure gain combustion in the form of continuous detonations can provide a significant increase in the efficiency of a variety of propulsion and energy conversion devices. In this regard, rotating detonation engines (RDEs) that utilize an azimuthally-moving detonation wave in annular systems are increasingly seen as a viable approach to realizing pressure gain combustion. However, practical RDEs that employ non-premixed fuel and oxidizer injection need to minimize losses through a number of mechanisms, including turbulence-induced shock-front variations, incomplete fuel-air mixing, and premature deflagration. In this study, a canonical stratified detonation configuration is used to understand the impact of preburning on detonation efficiency. It was found that heat release ahead of the detonation wave leads to weaker shock fronts, delayed combustion of partially-oxidized fuel-air mixture, and non-compact heat release. Furthermore, large variations in wave speeds were observed, which is consistent with wave behavior in full-scale RDEs. Peak pressures in the compression region or near triple points were considerably lower than the theoretically-predicted values for ideal detonations. Analysis of the detonation structure indicates that this deflagration process is parasitic in nature, reducing the detonation efficiency but also leading to heat release far behind the wave that cannot directly strengthen the shock wave. This parasitic combustion leads to commensal combustion (heat release far downstream of the wave), indicating that it is the root cause of combustion efficiency losses.  相似文献   
72.
The network loading problem (NLP) is a specialized capacitated network design problem in which prescribed point-to-point demand between various pairs of nodes of a network must be met by installing (loading) a capacitated facility. We can load any number of units of the facility on each of the arcs at a specified arc dependent cost. The problem is to determine the number of facilities to be loaded on the arcs that will satisfy the given demand at minimum cost.This paper studies two core subproblems of the NLP. The first problem, motivated by a Lagrangian relaxation approach for solving the problem, considers a multiple commodity, single arc capacitated network design problem. The second problem is a three node network; this specialized network arises in larger networks if we aggregate nodes. In both cases, we develop families of facets and completely characterize the convex hull of feasible solutions to the integer programming formulation of the problems. These results in turn strengthen the formulation of the NLP.Research of this author was supported in part by a Faculty Grant from the Katz Graduate School of Business, University of Pittsburgh.  相似文献   
73.
74.
Dielectric measurements have been carried out for the determination of real and imaginary parts of the permittivity of a newly synthesized, unusually shaped liquid crystal. The sample has been investigated in the frequency range from 100 Hz to 10 MHz within a temperature range 80-130 °C. The dielectric measurements in the smectic A phase indicate a Cole-Cole type of dispersion, and the activation energy was found to be 5.5 meV by using the Arrhenius plot of relaxation time. In addition to this, thermal and optical transmittance studies have also been conducted in the above mentioned temperature range, and the temperature dependence of these parameters has been discussed in detail. The phase transition temperature obtained from a differential scanning calorimetry (DSC) study matches within 2 °C that was obtained from an optical transmittance study. The dielectric and optical behavior of the unusually shaped liquid crystal has been explained on the basis of a proposed theoretical model in which a sample possesses two different conformers having induced polarizations in opposite directions.  相似文献   
75.
Ferrocene tethered N‐heterocyclic carbene‐copper complex anchored on graphene ([GrFemImi]NHC@Cu complex) has been synthesized by covalent grafting of ferrocenyl ionic liquid in the matrix of graphene followed by metallation with copper (I) iodide. The [GrFemImi]NHC@Cu complex has been characterized by fourier transform infrared (FT‐IR), fourier transform Raman (FT‐Raman), CP‐MAS 13C NMR spectroscopy, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), energy dispersive X‐ray (EDX) analysis, X‐ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area analysis and X‐ray diffractometer (XRD) analysis. This novel complex served as a robust heterogeneous catalyst for the synthesis of bioactive N‐aryl sulfonamides from variety of aryl boronic acids and sulfonyl azides in ethanol by Chan‐Lam coupling. Recyclability experiments were executed successfully for six consecutive runs.  相似文献   
76.
A rapid, precise, and reliable liquid chromatography tandem mass spectrometry (LC–MS/MS) method has been developed for the characterization of stressed degradation products of mirabegron. It is used in the treatment of overactive bladder and administered to treat urinary symptoms such as urgency or frequency and incontinence. It also works by relaxing the muscles around bladder.

Mirabegron was subjected to hydrolysis (acidic, alkaline, and neutral) and peroxidation, as per ICH-specified conditions. The drug showed degradation under stress conditions. However, it was stable to neutral conditions. A total of seven degradation products were observed and the chromatographic separation of the drug and its degradation products was achieved on X-TerraRP-8 (250 mm × 4.6 mm, i.d., 5 µm) column using 0.01 M ammonium acetate as mobile phase-A and 60:40 ratio of acetonitrile (ACN):water as mobile phase-B. The degradation products were characterized by LC–MS/MS and its fragmentation pathways were proposed. Probable possible structures were drawn based on parent and daughter molecular ions. One peroxide degradant impurity was isolated using preparative LC and characterized using liquid chromatography–mass spectrometry and NMR data.  相似文献   
77.
Using first‐principles methodologies, the equilibrium structures and the relative stability of CO2@[Znq+Im] (where q=0, 1, 2; Im=imidazole) complexes are studied to understand the nature of the interactions between the CO2 and Znq+–imidazole entities. These complexes are considered as prototype models mimicking the interactions of CO2 with these subunits of zeolitic imidazolate frameworks or Zn enzymes. These computations are performed using both ab initio calculations and density functional theory. Dispersion effects accounting for long‐range interactions are considered. Solvent (water) effects were also considered using a polarizable continuum model approach. Natural bond orbital, charge, frontier orbital and vibrational analyses clearly reveal the occurrence of charge transfer through covalent and noncovalent interactions. Moreover, it is found that CO2 can adsorb through more favorable π‐type stacking as well as σ‐type hydrogen‐bonding interactions. The inter‐monomer interaction potentials show a significant anisotropy that might induce CO2 orientation and site‐selectivity effects in porous materials and in active sites of Zn enzymes. Hence, this study provides valuable information about how CO2 adsorption takes place at the microscopic level within zeolitic imidazolate frameworks and biomolecules. These findings might help in understanding the role of such complexes in chemistry, biology and material science for further development of new materials and industrial applications.  相似文献   
78.
The design and synthesis of receptors capable of selective, noncovalent recognition of carbohydrates continues to be a signature challenge in bioorganic chemistry. We report a new generation of tripodal receptors incorporating three pyridine (compound 2) or quinoline (compound 3) rings around a central cyclohexane core for use in molecular recognition of monosaccharides in apolar and polar protic solvents. These tripodal receptors were investigated using (1)H NMR, UV, and fluorescence titrations in order to determine their binding abilities toward a set of octyl glycosides. Receptor 2 displayed the highest binding affinity reported to date for noncovalent 1:1 binding of an alpha-glucopyranoside in chloroform (Ka = 212,000 +/- 27,000 M(-1)) and an approximately 8-fold selectivity for the alpha anomer over the beta anomer of the glucopyranoside. Most importantly, 2 retained its micromolar range of affinities toward monosaccharides in a polar and highly competitive solvent (methanol). The quinoline variant 3 also displayed micromolar binding affinities for selected monosaccharides in methanol (as measured by fluorescence) that were generally smaller than those of 2. Compound 3 was found to follow a selectivity pattern similar to that of 2, displaying higher affinities for glucopyranosides than for other monosaccharides. The binding stoichiometry was estimated to be 1:1 for the complexes formed by both 2 and 3 with glucopyranosides, as determined by Job plots. Nuclear Overhauser effect spectroscopy allowed for the derivation of a binding model consistent with the observed selectivities.  相似文献   
79.
Bacterial resistance to antibiotics, particularly to multiple drug resistant antibiotics, is becoming cause for significant concern. The only really viable course of action is to discover new antibiotics with novel mode of actions. Thiazolyl peptides are a class of natural products that are architecturally complex potent antibiotics but generally suffer from poor solubility and pharmaceutical properties. To discover new thiazolyl peptides potentially with better desired properties, we designed a highly specific assay with a pair of thiazomycin sensitive and resistant strains of Staphylococcus aureus, which led to the discovery of philipimycin, a new thiazolyl peptide glycoside. It was isolated along with an acid-catalyzed degradation product by bioassay-guided fractionation. Structure of both compounds was elucidated by extensive application of 2D NMR, 1D TOCSY, and HRESIFT-MS/MS. Both compounds showed strong antibacterial activities against gram-positive bacteria including MRSA and exhibited MIC values ranging from 0.015 to 1 microg/mL. Philipimycin was significantly more potent than the degradation product. Both compounds showed selective inhibition of protein synthesis, indicating that they targeted the ribosome. Philipimycin was effective in vivo in a mouse model of S. aureus infection exhibiting an ED50 value of 8.4 mg/kg. The docking studies of philipimycin suggested that a part of the molecule interacts with the ribosome and another part with Pro23, Pro22, and Pro26 of L11 protein, which helped in explaining the differential of activities between the sensitive and resistant strains. The design and execution of the bioassay, the isolation, structure, in vitro and in vivo antibacterial activity, and docking studies of philipimycin and its degradation product are described.  相似文献   
80.
Butadiene monoxide (BMO) undergoes the S(0)-->S(1) transition, involving the excitation of both pi and n electrons to pi(*) orbital, at 193 nm. After relaxing to the ground electronic state via internal conversion, BMO molecules undergo intramolecular rearrangement and subsequently dissociate to form unexpected OH radicals, which were detected state selectively by laser-induced fluorescence technique, and the energy state distribution was measured. OH is produced vibrationally cold, OH(nu(")=0,J(")), with the rotational population characterized by a rotational temperature of 456+/-70 K. The major portion (approximately 60%) of the available energy is partitioned into internal degrees of the photofragments, namely, vibration and rotation. A considerable portion (25%-35%) also goes to the relative translation of the products. The Lambda doublet and spin-orbit ratios of OH were measured to be nearly unity, implying statistical distribution of these states and, hence, no preference for any of the Lambda doublet (Lambda+ and Lambda-) and spin-orbit (Pi(3/2) and Pi(1/2)) states. Formation time of the nascent OH radical was measured to be <100 ns. Different products, such as crotonaldehyde and methyl vinyl ketone, were detected by gas chromatography as stable products of photodissociation. A reaction mechanism for the formation of all these photoproducts, transient and stable, is proposed. The multiple pathways by which these products can be formed have been theoretically optimized, and energies have been calculated. Absorption cross section of BMO at 193 nm was measured, and quantum yield of OH generation channel was also determined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号