首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   6篇
化学   87篇
力学   30篇
数学   6篇
物理学   33篇
  2022年   1篇
  2021年   6篇
  2020年   4篇
  2019年   3篇
  2018年   8篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   12篇
  2011年   9篇
  2009年   3篇
  2008年   3篇
  2007年   8篇
  2006年   4篇
  2005年   7篇
  2004年   5篇
  2003年   12篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   4篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1975年   5篇
  1974年   1篇
  1973年   2篇
  1971年   2篇
排序方式: 共有156条查询结果,搜索用时 15 毫秒
141.
Scaffolds used in skin tissue engineering must mimic the native function of the extracellular matrix (ECM) and facilitate the fibroblast cell response for new tissue growth. In this study, a novel dressing scaffold based on polyurethane (PU) with sesame oil, honey, and propolis was fabricated by electrospinning. Scanning electron microscopy (SEM) images showed that the diameter of the electrospun scaffolds decreased by blending sesame oil (784?±?125.46?nm) and sesame oil/honey/propolis (576?±?133.72?nm) into the PU matrix (890?±?116.911?nm). Fourier infrared (FT-IR) and thermogravimetric (TGA) analysis demonstrated the formation of hydrogen bonds and interaction between PU and sesame oil, honey, and propolis. Contact-angle measurement indicated reduced wettability of PU/sesame oil scaffold (114?±?1.732) and improved wettability (54.33?±?1.528) in the PU/sesame oil/honey/propolis scaffold. Further, tensile tests and atomic force microscopy (AFM) analysis indicated that the fabricated composite membrane exhibited enhanced mechanical strength and reduced surface roughness compared to the pristine PU. The developed composite displayed less toxicity to the red blood cells (RBC’s) compared to the pristine PU. Cytotoxicity assay showed enhanced cell viability of HDF in electrospun scaffolds than pristine PU after 72?h culture. These enhanced properties of the developed scaffolds suggest the potential of utilizing them in skin tissue engineering.  相似文献   
142.
Interaction of sol–gel synthesized Ce–Ag‐codoped ZnO (CSZO) nanocrystals with (E)‐1‐(naphthalen‐1‐yl)‐2‐styryl‐1H‐phenanthro[9,10‐d]imidazole has been analysed. The synthesized nanocrystals and their composites with naphthyl styryl phenanthrimidazole have been characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X‐ray spectroscopy, X‐ray diffractometry, X‐ray photoelectron spectroscopy (XPS) lifetime and Fourier transform infrared spectroscopy and cyclic voltammetry. XPS shows doped silver and cerium in Ag0 and Ce4+ states, respectively. SEM and TEM images of CSZO nanoparticles show that they appear to be 3D trapezoid and cocoon‐like shape. The selected area electron diffraction pattern supports the nanocrystalline character of the synthesized material. The percentages of doping of cerium and silver in CSZO are 0.54 (at.) and 0.34 (at.), respectively. From the energy levels of the materials used in the imidazole–CSZO composite, the dominant CT direction has been analysed. Theoretical investigation shows that the binding energy and energy gap of the imidazole composites are highly dependent on the nature of the silver oxide cluster and that charge transfer in the imidazole–Ag4O4 composite is faster than the same in other composites. Molecular docking technique has also been carried out to understand the imidazole–DNA interactions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
143.
Experimental Techniques -  相似文献   
144.
A new chromatographic extraction method has been developed using Amberlite XAD-16 (AXAD-16) resin chemically modified with (3-hydroxyphosphinoyl-2-oxo-propyl)phosphonic acid dibenzyl ester (POPDE). The chemically modified polymer was characterized by 13C CPMAS and 31P solid-state NMR, Fourier Transform–NIR–FIR–Raman spectroscopy, CHNPS elemental analysis, and thermogravimetric analysis. Extraction studies performed for U(VI), Th(IV), and La(III) showed good distribution ratio (D) values of approximately 103, even under high acidities (1–4 M). Various physiochemical parameters that influence the quantitative metal ion extraction were optimized by static and dynamic methods. Data obtained from kinetic studies revealed that a time duration of 10 min was sufficient to achieve complete metal ion extraction. Maximum metal sorption capacity values under optimum pH conditions were found to be 1.38, 1.33, and 0.75 mmol g–1 for U(VI), Th(IV), and La(III), respectively. Interference studies performed in the presence of concentrated diverse ions and electrolyte species showed quantitative analyte recovery with lower limits of analyte detection being 10 and 20 ng cm–3 for U(VI) and both Th(IV) and La(III), respectively. Sample breakthrough studies performed on the extraction column showed an enrichment factor value of 330 for U(VI) and 270 for Th(IV) and La(III), respectively. Analyte desorption was effective using 15 cm3 of 1 M (NH4)2CO3 with >99.8% analyte recovery. The analytical applicability of the developed resin was tested with synthetic mixtures mimicking nuclear spent fuels, seawater compositions and real water and geological samples. The rsd values of the data obtained were within 5.2%, thereby reflecting the reliability of the developed method.  相似文献   
145.
For β<1, let denote the class of all normalized analytic functions f such that
  相似文献   
146.
We present neutron scattering spectra taken from a single crystal of Na0.75CoO2, the precursor to a novel cobalt-oxide superconductor. The data contain a prominent inelastic signal at low energies ( approximately 10 meV), which is localized in wave vector about the origin of two-dimensional reciprocal space. The signal is highly dispersive, and decreases in intensity with increasing temperature. We interpret these observations as direct evidence for the existence of ferromagnetic spin fluctuations within the cobalt-oxygen layers.  相似文献   
147.
We have observed a diffuse component to the low-energy magnetic excitation spectrum of stripe-ordered La(5/3)Sr(1/3)NiO4 probed by neutron inelastic scattering. The diffuse scattering forms a square pattern with sides parallel and perpendicular to the stripe directions. The signal is dispersive, with a maximum energy of approximately 10 meV. Probed at 2 meV, the scattering decreases in strength with increasing temperature, and is barely visible at 100 K. We argue that the signal originates from dynamic, quasi-one-dimensional, antiferromagnetic correlations among the stripe electrons.  相似文献   
148.
We have conducted the first soft x-ray diffraction experiments from a bulk single crystal, studying the bilayer manganite La2-2xSr1+2xMn2O7 with x=0.475 in which we were able to access the (002) Bragg reflection using soft x rays. The Bragg reflection displays a strong resonant enhancement at the L(III) and L(II) manganese absorption edges. We demonstrate that the resonant enhancement of the magnetic diffraction of the (001) is extremely large, indeed so large that it exceeds that of the nonresonant Bragg diffraction. Resonant soft x-ray scattering of 3d transition metal oxides is the only technique for the atomic selective measurement of spin, charge, and orbital correlations in materials, such as high temperature superconductors, colossal magnetoresistance manganites, and charge stripe nickelates.  相似文献   
149.
The stress-gradient effects on the fracture strength of materials have been recognized for a long time. In metals, Neuber's elementary block theory has been used to explain why the actual strength reduction due to notches is less than that indicated by the stress-concentration factor. In fiber-reinforced composites, the same concept was renamed as the hole-size effect, giving rise to a point-stress characteristic dimension and an average-stress characteristic dimension.  相似文献   
150.
In this paper, we report on a comparative study of the effect of Fe2O3 nanoparticles (NP), introduced onto a thin oxide layer formed on silicon and germanium surfaces, on the thermal decomposition pathway of the individual oxide layers. On both the surfaces, NP of Fe2O3 undergo a reduction reaction through a bonding partner change reaction, where the oxygen atoms change from Fe to Si or Ge. On both the surfaces, annealing results in the conversion of the suboxide-like species to dioxide-like species (SiOx to SiO2 and GeOx to GeO2 respectively for Si and Ge surfaces), until the oxide layer decomposes following the desorption of the respective monoxide species (SiO and GeO). Both the Si and Ge corelevels show a larger chemical shift (4.1 and 3.51 eV in Si 2p and Ge 3d corelevels, respectively) for the as-prepared oxide samples with the NP, at room temperature compared to that without the NP (3.7 and 3.4 eV), indicating a catalytic enhancement of the dioxide formation. Selective formation of silicon oxides leads to encapsulation of the nanoparticles and acts like a protective layer, preventing the oxidation of Fe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号