首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   2篇
化学   74篇
晶体学   1篇
力学   5篇
数学   3篇
物理学   37篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   7篇
  2014年   5篇
  2013年   11篇
  2012年   13篇
  2011年   9篇
  2010年   1篇
  2009年   9篇
  2008年   7篇
  2007年   7篇
  2006年   9篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1979年   1篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
71.
The perovskite manganite systems have been the materials of tremendous interest due to their strong correlation between structure, transport and magnetism. These materials in their single-crystal form show colossal magneto-resistance (CMR), but the applied fields are very high (∼1–5 T). The polycrystalline samples do show high low-field magneto-resistance (LFMR), but good amount of control over particle sizes and grain-boundary distribution is required, which is well known but less realized in practical approaches. In this context, we report on synthesis and manipulation of polycrystalline La0.7Ba0.3MnO3 (LBMO) submicron powders using citric acid chelation. The Citrate-gel route is used to synthesize poly-dispersed LBMO powders which are subjected to citrate chelation for a duration of 0 (LB0) to 4 h(LB4) . The samples show improved ordering in X-ray diffraction patterns. Raman spectroscopy scans indicate changed mode signatures due to the probable chelating process, which alters the surface morphology. X-ray photoelectron microscopy shows an evidence of fine citrate layer on the grain boundaries. Low temperature B–H curves exhibit fine hysteresis loops for all samples, while room temperature B–H curves shows paramagnetic response. Scanning electron microscopy images showed the formation of well arranged, connected, mono-dispersed grains of LB4 sample, as against polydispered LB0. The magneto-resistance (at H=100 kOe) is seen to enhance for LB4 at its transition temperature (75%, as compared to LB0, where it is 60%), which can be attributed to the well-controlled inter-grain tunneling phenomenon and thin insulating regions in between, created due to citrate chelation, which probably enhances the scattering phenomenon and its susceptibility to applied fields. As citric acid is known to chelate Mn ions, it probably chelates the smaller LB particulate structure and leaves behind citrate-connected submicron grains of LBMO, which are seen to be well engineered.  相似文献   
72.
Indium doped Cd0.9Zn0.1Se films have been synthesized by chemical bath deposition method. The deposited films act as photoanode in photoelectrochemical (PEC) cells. The varying concentration of indium from 0.01 to 1.0 mol% was used. The film thickness increases from 0.72 to 0.80 μm as doping concentration increases up to 0.1 mol%, thereafter it decreases. The cell configuration is n-Cd0.9Zn0.1Se:In|NaOH (1 M)+S (1 M)+Na2S (1 M)|C(graphite). The various performance parameters were examined with respect to doping concentration of indium. It is found that fill factor and efficiency is maximum for 0.1 mol% indium photosensitive films. This is due to low resistance, high flat band potential, maximum open circuit voltage as well as maximum short-circuit current. The barrier height was examined from the temperature dependence of the reverse saturation current. The lighted ideality factor was found to be minimum for 0.1 mol% indium photosensitive films. A cell utilizing doping photosensitive films showed a wider spectral response. The utility of this work is in improving efficiency of the PEC cell.  相似文献   
73.
74.
Cadmium selenide films have been synthesized by dip method. Cadmium selenide acts as photoanode in photoelectrochemical (PEC) cells. The photoanode was annealed upto 473 K. The cell configuration is n-CdSe∣NaOH (1 M) +S (1 M) +Na2S (1 M) ∣C(graphite). Various performance parameters were examined with respect to annealed temperature. It is found that the fill factor and efficiency are maximum for photoelectrode annealed at 473 K. This is due to low resistance, high flat-band potential, maximum open-circuit voltage as well as maximum short-circuit current. The barrier height was examined from the temperature dependence of the reverse saturation current. The lighted ideality factor was found to be minimum for photoelectrode annealed at 473 K. A cell utilizing annealed photoelectrode showed a wider spectral response. The utility of this work is in improving the efficiency of PEC cells.  相似文献   
75.
ZnS thin films have been deposited by dip technique using succinic acid as a complexing agent. The structural and morphological characterizations of films have been investigated by X-ray diffraction, scanning electron microscope. X-ray pattern shows crystalline has hexagonal structure. The films show that good optical properties high absorption and band gap value was found to be 3.7 eV. The specific conductivity of the film was found to be in order of 10−5 (Ω cm)−1 and showing n-type conduction.  相似文献   
76.
Recent time domain experiments have explored solvation dynamics of a probe located inside a DNA duplex, in an effort to gain information, e.g., on the dynamics of water molecules in the DNA major and minor grooves and their environment. Multiple time constants in the range of a few picoseconds to several nanoseconds were obtained. We have carried out 15 ns long atomistic molecular dynamics simulations to study the solvation dynamics of bases of a 38 base-pair long DNA duplex in an aqueous solution containing counterions. We have computed the energy-energy time correlation function (TCF) of the four individual bases (A, T, G, and C) to characterize the solvation dynamics. All the TCFs display highly nonexponential decay with time. When the trajectories are analyzed with 100 fs time resolution, the TCF of each base shows initial ultrafast decay (with tau1 approximately equal 60-80 fs) followed by two intermediate components (tau2 approximately equal 1 ps, tau3 approximately equal 20-30 ps), in near complete agreement with a recent time domain experiment on DNA solvation. Interestingly, the solvation dynamics of each of the four different nucleotide bases exhibit rather similar time scales. To explore the existence of slow relaxation at longer times reported recently in a series of experiments, we also analyzed the solvation TCFs calculated with longer time trajectories and with a larger time resolution of 1 ps. In this case, an additional slow component with a time constant of the order of 250 ps is observed. Through an analysis of partial solvation TCFs, we find that the slow decay originates mainly from the interaction of the nucleotides with the dipolar water molecules and the counterions. An interesting negative cross-correlation between water and counterions is observed, which makes an important contribution to relaxation at intermediate to longer times.  相似文献   
77.
Transport properties (translational and rotational) of water in the two grooves of the B-DNA duplex are known to be different from those in the bulk. Here, we use a recently developed theoretical scheme to compute the entropies of water molecules in both of the grooves of DNA and compare them with that in the bulk. The scheme requires as input both translational and rotational velocity autocorrelation function (C(V)(t) and C(omega)(t), respectively) data. These velocity autocorrelation functions were computed from an atomistic MD simulation of a B-DNA duplex (36 base pairs long) in explicit water (TIP3P). The average values of the entropy of water at 300 K in both of the grooves of DNA (the TS value in the major groove is 6.71 kcal/mol and that in the minor groove is 6.41 kcal/mol) are found to be significantly lower than that in bulk water (the TS value is 7.27 kcal/mol). Thus, the entropic contribution to the free energy change (TDeltaS) of transferring a minor groove water molecule to the bulk is 0.86 kcal/mol and of transferring a major groove water to the bulk is 0.56 kcal/mol at 300 K, which is to be compared with 1.44 kcal/mol for melting of ice at 273 K. We also calculate the energy of interaction of each water molecule with the rest of the atoms in the system and hence calculate the chemical potential (Helmholtz free energy per water molecule, A = E - TS) in the different domains. The identical free energy value of water molecules in the different domains proves the robustness of the scheme. We propose that the configurational entropy of water in the grooves can be used as a measure of the mobility (or microviscosity) of water molecules in a given domain.  相似文献   
78.
A recent experimental study [J.-E. Rubensson et al., Phys. Rev. Lett. 83, 947 (1999)] measured a significant fluorescence yield of the He( 2lnl(')) photoexcited resonances, showing major qualitative differences from nonrelativistic predictions. We present a further theoretical study of these states, and perform R-matrix multichannel quantum defect theory calculations to extract fluorescence and ionization cross sections. These theoretical results are in excellent agreement with newer, higher-resolution measurements. Radiative and spin-orbit effects are quantified and shown to play an important role in the overall characterization of highly excited states.  相似文献   
79.
F in the nanotubes, indicating that metallic nanotubes are present in the sample. Received: 2 April 1998  相似文献   
80.
An expedient one-pot synthesis of aromatic amides has been reported from styrenes in the presence of N-bromosuccinimide and iodine by using aqueous ammonia in water. The reaction proceeds through the formation of α-bromoketone as an intermediate in the presence of NBS and water. α-Bromoketone on reaction with iodine forms bromodiiodoketone which on nucleophilic substitution with aqueous ammonia gives aromatic amide. Substituted aromatic amides were obtained in good yields with wide functional group compatibility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号