首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   3篇
化学   122篇
力学   1篇
数学   1篇
物理学   22篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2017年   1篇
  2016年   2篇
  2014年   2篇
  2013年   2篇
  2012年   7篇
  2011年   18篇
  2010年   1篇
  2009年   3篇
  2008年   13篇
  2007年   8篇
  2006年   6篇
  2005年   6篇
  2004年   7篇
  2003年   12篇
  2002年   4篇
  2001年   5篇
  2000年   1篇
  1999年   5篇
  1996年   1篇
  1995年   6篇
  1994年   3篇
  1993年   6篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1988年   3篇
  1986年   3篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
排序方式: 共有146条查询结果,搜索用时 15 毫秒
71.
The reaction of platinum(IV) complex trans-[PtCl4(EtCN)2] with pyrazoles 3,5-RR'pzH (R/R' = H/H, Me/H, Me/Me) leads to the formation of the trans-[PtCl4{NH=C(Et)(3,5-RR'pz)}2] (1-3) species due to the metal-mediated nitrile-pyrazole coupling. Pyrazolylimino complexes 1-3 (i) completely convert to pyrazole complexes cis-[PtCl4(3,5-RR'pzH)2] by elimination of EtCN upon reflux in a CH2Cl2 solution or upon heating in the solid state; (ii) undergo exchange at the imino C atom with another pyrazole different from that contained in the pyrazolylimino ligand. The reaction of trans-[PtIICl2(EtCN)2] and 3,5-RR'pzH, conducted under conditions similar to those for trans-[PtIVCl4(EtCN)2], is much less selective, and the composition of the products strongly depends on the pyrazole employed: (a) with pzH, the reaction gives a mixture of three products, i.e., [PtCl2NH=C(Et)pz-kappa2N,N}] (4), [PtCl(pzH){NH=C(Et)pz-kappa2N,N}]Cl (5), and [Pt(pzH)2{NH=C(Et)pz-kappa2N,N}]Cl2 (6) (complexes 5 and 6 are rather unstable and gradually transform to trans-[PtCl2(pzH2] and [Pt(pzH)(4)]Cl(2) and free EtCN); (b) with 3,5-Me(2)pzH, the reaction leads to the formation of [PtCl2NH=C(Et)(3,5-Me2pz)-kappa2N,N}] (7) and [PtCl(3,5-Me2pzH)3]Cl (8); (c) in the case of asymmetric pyrazole 3(5)-MepzH, which can be added to EtCN and/or bind metal centers by any of the two nonequivalent nitrogen sites, a broad mixture of currently unidentified products is formed. The reduction of 1-3 with Ph3P=CHCO2Me in CHCl3 allows for the formation of corresponding platinum(II) compounds trans-[PtCl2{NH=C(Et)(3,5-RR'pz)}2] (9-11). Ligands NH=C(Et)(3,5-RR'pz) (12-14) were almost quantitatively liberated from 9-11 with 2 equiv of 1,2-bis-(diphenylphosphino)ethane in CDCl3, giving free imines 12-14 in solution and the precipitate of trans-[Pt(dppe)2](Cl)2. Pyrazolylimines 12-14 undergo splitting in CDCl3 solution at 20-25 degrees C for ca. 20 h to furnish the parent propiononitrile and the pyrazole 3,5-RR'pzH, but they can be synthetically utilized immediately after the liberation.  相似文献   
72.
73.
74.
Areneruthenium(II) molecular complexes of the formula [Ru(arene)(Q)Cl], containing diverse 4-acyl-5-pyrazolonate ligands Q with arene = cymene or benzene, have been synthesized by the interaction of HQ and [Ru(arene)Cl(micro-Cl)]2 dimers in methanol in the presence of sodium methoxide. The dinuclear compound [{Ru(cymene)Cl}2Q4Q] (H2Q4Q = bis(4-(1-phenyl-3-methyl-5-pyrazolone)dioxohexane), existing in the RRuSRu (meso form), has been prepared similarly. [Ru(cymene)(Q)Cl] reacts with sodium azide in acetone, affording [Ru(cymene)(Q)N3] derivatives, where Cl- has been replaced by N3-. The reactivity of [Ru(cymene)(Q)Cl] has also been explored toward monodentate donor ligands L (L = triphenylphosphine, 1-methylimidazole, or 1-methyl-2-mercaptoimidazole) and exo-bidentate ditopic donor ligands L-L (L-L = 4,4'-bipyridine or bis(diphenylphosphino)propane) in the presence of silver salts AgX (X = SO3CF3 or ClO4), new ionic mononuclear complexes of the formula [Ru(cymene)(Q)L]X, and ionic dinuclear complexes of the formula [{Ru(cymene)(Q)}2L-L]X2 being obtained. The solid-state structures of a number of complexes were confirmed by X-ray crystallographic studies. Their redox properties have been investigated by cyclic voltammetry and controlled potential electrolysis, which, on the basis of their measured RuII/III reversible oxidation potentials, have allowed the ordering of the bidentate acylpyrazolonate ligands according to their electron-donor character and are indicative of a small dependence of the HOMO energy upon the change of the monodentate ligand. This is accounted for by DFT calculations, which show a relevant contribution of acylpyrazolonate ligand orbitals to the HOMOs, whereas that from the monodentate ligand is minor.  相似文献   
75.
Lanthanide complexes have attracted a widespread attention due to their structural diversity, as well as multifunctional and tunable properties. The development of lanthanide based functional materials has often relied on the design of the secondary coordination sphere of the corresponding lanthanide complexes. For instance, usually simple lanthanide salts (solvento complexes) do not catalyze effectively organic reactions or provide low yield of the expected product, whereas the presence of a suitable organic ligand with a noncovalent bond donor or acceptor centre (secondary coordination sphere) modifies the symmetry around the metal centre in lanthanide complexes which then successfully can act as catalysts in both homogenous and heterogenous catalysis. In this minireview, we discuss several relevant examples, based on X-ray crystal structure analyses, in which the hydrogen, halogen, chalcogen, pnictogen, tetrel and rare-earth bonds, as well as cation-π, anion-π, lone pair-π, π–π and pancake interactions, are used as a synthon in the decoration of the secondary coordination sphere of lanthanide complexes.  相似文献   
76.
The new coordination polymers (CPs) [Zn(μ-1κO1:1κO2-L)(H2O)2]n·n(H2O) (1) and [Cd(μ4-1κO1O2:2κN:3,4κO3-L)(H2O)]n·n(H2O) (2) are reported, being prepared by the solvothermal reactions of 5-{(pyren-4-ylmethyl)amino}isophthalic acid (H2L) with Zn(NO3)2.6H2O or Cd(NO3)2.4H2O, respectively. They were synthesized in a basic ethanolic medium or a DMF:H2O mixture, respectively. These compounds were characterized by single-crystal X-ray diffraction, FTIR spectroscopy, thermogravimetric and elemental analysis. The single-crystal X-ray diffraction analysis revealed that compound 1 is a one dimensional linear coordination polymer, whereas 2 presents a two dimensional network. In both compounds, the coordinating ligand (L2−) is twisted due to the rotation of the pyrene ring around the CH2-NH bond. In compound 1, the Zn(II) metal ion has a tetrahedral geometry, whereas, in 2, the dinuclear [Cd2(COO)2] moiety acts as a secondary building unit and the Cd(II) ion possesses a distorted octahedral geometry. Recently, several CPs have been explored for the cyanosilylation reaction under conventional conditions, but microwave-assisted cyanosilylation of aldehydes catalyzed by CPs has not yet been well studied. Thus, we have tested the solvent-free microwave-assisted cyanosilylation reactions of different aldehydes, with trimethylsilyl cyanide, using our synthesized compounds, which behave as highly active heterogeneous catalysts. The coordination polymer 1 is more effective than 2, conceivably due to the higher Lewis acidity of the Zn(II) than the Cd(II) center and to a higher accessibility of the metal centers in the former framework. We have also checked the heterogeneity and recyclability of these coordination polymers, showing that they remain active at least after four recyclings.  相似文献   
77.
Numerical continuation of degenerate homoclinic orbits in planar systems   总被引:1,自引:0,他引:1  
In this paper we develop numerical algorithms for the continuationof degenerate homoclinic connections in planar systems. We considerthe case where the equilibrium point has zero trace and twocases of higher-order degeneracies. The method we propose isable to continue homoclinic connections of order up to codimension-four.Application of the algorithm to four examples supports its validityand demonstrates its usefulness.  相似文献   
78.
The collision-induced dissociation (CID) of deprotonated arylalkylamines of general formula R(1)C(6)H(4)CHR(2)CH(2)NR(3)(2) (where R(1) = H, OH, F or NO(2); R(2) = H or OH; R(3) = H or CH(3)) generated by negative chemical ionization with H(2)O and D(2)O as ionizing reagents, is discussed. The negative chemical ionization mass spectra show that, in the absence of a hydroxy group in the aromatic ring, deprotonation takes place at the benzylic position whereas the proton is lost from the OH group when present. The nitro compound forms only M(-.) ions. The CID spectra of the deprotonated molecules show that fragmentations are strongly dependent on the structural features of the molecules, namely the presence or absence of substituents in the aromatic ring or aliphatic chain. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
79.
The possibility of tunable regioselective activation of a dinitrile towards nucleophilic attack was demonstrated. For that, a sulfo-arylhydrazone unit was introduced into malononitrile and the thus formed intramolecular hydrogen bond systems assisted specific nucleophilic attacks to the cyano moieties leading to a variety of amidines, carboxamides and iminoesters depending on the nucleophiles and conditions used.  相似文献   
80.
Reactions of copper(II) with 3-phenylhydrazopentane-2,4-diones X-2-C(6)H(4)-NHN=C{C(=O)CH(3)}(2) bearing a substituent in the ortho-position [X = OH (H(2)L(1)) 1, AsO(3)H(2) (H(3)L(2)) 2, Cl (HL(3)) 3, SO(3)H (H(2)L(4)) 4, COOCH(3) (HL(5)) 5, COOH (H(2)L(6)) 6, NO(2) (HL(7)) 7 or H (HL(8)) 8] lead to a variety of complexes including the monomeric [CuL(4)(H(2)O)(2)]·H(2)O 10, [CuL(4)(H(2)O)(2)] 11 and [Cu(HL(4))(2)(H(2)O)(4)] 12, the dimeric [Cu(2)(H(2)O)(2)(μ-HL(2))(2)] 9 and the polymeric [Cu(μ-L(6))](n)] 13 ones, often bearing two fused six-membered metallacycles. Complexes 10-12 can interconvert, depending on pH and temperature, whereas the Cu(II) reactions with 4 in the presence of cyanoguanidine or imidazole (im) afford the monomeric compound [Cu(H(2)O)(4){NCNC(NH(2))(2)}(2)](HL(4))(2)·6H(2)O 14 and the heteroligand polymer [Cu(μ-L(4))(im)](n)15, respectively. The compounds were characterized by single crystal X-ray diffraction (complexes), electrochemical and thermogravimetric studies, as well as elemental analysis, IR, (1)H and (13)C NMR spectroscopies (diones) and ESI-MS. The effects of the substituents in 1-8 on the HOMO-LUMO gap and the relative stability of the model compounds [Cu(OH)(L(8))(H(2)O)]·H(2)O, [Cu(L(1))(H(2)O)(2)]·H(2)O and [Cu(L(4))(H(2)O)(2)]·H(2)O are discussed on the basis of DFT calculations that show the stabilization follows the order: two fused 6-membered > two fused 6-membered/5-membered > one 6-membered metallacycles. Complexes 9, 10, 12 and 13 act as catalyst precursors for the peroxidative oxidation (with H(2)O(2)) of cyclohexane to cyclohexanol and cyclohexanone, in MeCN/H(2)O (total yields of ca. 20% with TONs up to 566), under mild conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号