首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   3篇
化学   122篇
力学   1篇
数学   1篇
物理学   22篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2017年   1篇
  2016年   2篇
  2014年   2篇
  2013年   2篇
  2012年   7篇
  2011年   18篇
  2010年   1篇
  2009年   3篇
  2008年   13篇
  2007年   8篇
  2006年   6篇
  2005年   6篇
  2004年   7篇
  2003年   12篇
  2002年   4篇
  2001年   5篇
  2000年   1篇
  1999年   5篇
  1996年   1篇
  1995年   6篇
  1994年   3篇
  1993年   6篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1988年   3篇
  1986年   3篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
排序方式: 共有146条查询结果,搜索用时 0 毫秒
31.
32.
Intramolecular chalcogen bonding in arylhydrazones of sulfamethizole is strengthened by conjugation in the π-system of a noncovalent five-membered ring. The S⋅⋅⋅O distance in the sulfamethizole moiety of these compounds ranges from 2.698(3) to 2.806(15) Å, which indicates its strong dependence on the attached arylhydrazone fragments. Information on the nature of the intramolecular chalcogen bond was afforded by DFT calculations.  相似文献   
33.
Molybdenum and tungsten complexes containing the pypzH (3-(2-pyridyl)pyrazole) ligand as a chelating bidentate are prepared: [Mo(CO)(4)(pypzH)], cis-[MoBr(η(3)-allyl)(CO)(2)(pypzH)], cis-[MoCl(η(3)-methallyl)(CO)(2)(pypzH)], [MI(2)(CO)(3)(pypzH)] (M = Mo, W) from [Mo(CO)(4)(NBD)] or the adequate bis(acetonitrile) complexes. The deprotonation of the molybdenum allyl or methallyl complexes affords the bimetallic complexes [cis-{Mo(η(3)-allyl)(CO)(2)(μ(2)-pypz)}](2) or [cis-{Mo(η(3)-methallyl)(CO)(2)(μ(2)-pypz)}](2) (μ(2)-pypz = μ(2)-3-(2-pyridyl-κ(1)N)pyrazolate-2κ(1)N). The allyl complex was subjected to an electrochemical study, which shows a marked connection between both metallic centres through the bridging pyridylpyrazolates.  相似文献   
34.
Summary The interconversion of carbyne, carbyne and hydride complexes derived from protonations oftrans-[M(CNMe)2(dppe)2](M = Mo or W) has been studied. The initial site of protonation is shown to be the isonitrile nitrogen and all protonations proceed through the common carbyne intermediatetrans-[M(CNHMe)(CNMe)(dppe)2]+. The CNHMe group in traps-[M(CNHMe)2(dppe)2]2+ is shown to be susceptible to electrophilic attack at N and nucleophilic attack at ligating C, the new complexestrans-[W(CNH2Me)(CNHMe)(dppe)2](BF4)3 andtrans-[Mo(CHNHMe)(CNHMe)(dppe)2]BF4 being formed, respectively.  相似文献   
35.
36.
The dinuclear iron(II)-hydride complexes [[FeH(dppe)(2)](2)(mu-LL)][BF(4)](2) (LL = NCCH=CHCN (1a), NCC(6)H(4)CN (1b), NCCH(2)CH(2)CN (1c); dppe = Ph(2)PCH(2)CH(2)PPh(2)) and the corresponding mononuclear ones, trans-[FeH(LL)(dppe)(2)][BF(4)] (2a-c) were prepared by treatment of trans-[FeHCl(dppe)(2)], in tetrahydrofuran (thf) and in the presence of Tl[BF(4)], with the appropriate dinitrile (in molar deficiency or excess, respectively). Metal-metal interaction was detected by cyclic voltammetry for 1a, which, upon single-electron reversible oxidation, forms the mixed valent Fe(II)/Fe(III) 1a(+) complex. The latter either undergoes heterolytic Fe-H bond cleavage (loss of H(+)) or further oxidation, at a higher potential, also followed by hydride-proton evolution, according to ECECE or EECECEC mechanistic processes, respectively, which were established by digital simulation. Anodically induced Fe-H bond rupture was also observed for the other complexes and the detailed electrochemical behavior, as well as the metal-metal interaction (for 1a), were rationalized by ab initio calculations for model compounds and oxidized derivatives. These calculations were used to generate the structural parameters (full geometry optimization), the most stable isomeric forms, the ionization potentials, the effective atomic charges, and the molecular orbital diagrams, as well as to predict the nature of the other electron-transfer induced chemical steps, i.e. geometric isomerization and nucleophilic addition, by BF(4)(-), to the unsaturated iron center resulting from hydride-proton loss. From the values of the oxidation potential of the complexes, the electrochemical P(L) and E(L) ligand parameters were also estimated for the dinitrile ligands (LL) and for their mononuclear complexes 2 considered as ligands toward a second binding metal center.  相似文献   
37.
38.
Complexes trans-[PtX(L)(PPh3)2]A [1: X = CF3; A = BF4; L = NCNH2, NCNMe2, NCNEt2, or NCNC(NH2)2. 2: X = Cl; A = BPh4; L = NCNMe2 or NCNEt2] and cis-[PtCl(L)(PPh3)2][BPh4] [3: L = NCNH2 or NCNC(NH2)2], which appear to be the first cyanamide or cyanoguanidine complexes of platinum to be reported, have been prepared by treatment of trans-[PtBr(CF3)(PPh3)2] (in CH2Cl2/acetone and in the presence of Ag[BF4]) or of cis-[PtCl2(PPh3)2] (in THF and in the presence of Na[BPh4]), respectively, with the appropriate substrate. In KBr pellets or in solution 1 (L = NCNMe2 or NCNEt2) undergoes ready replacement of the organocyanamide (under the trans influence of CF3) by bromide to regenerate trans-(PtBr(CF3)(PPh3)2]. The X-ray structure of 1 (X = CF3, A = BF4, L = NCNEt2) is also reported, and shows the presence of two apical intramolecular contacts of the metal with two ortho-hydrogen atoms of the phosphines, whereas the amine N atom of the diethylcyanamide is trigonal planar in the linear NCN framework with a delocalized π system.  相似文献   
39.
Treatment of trans-[PtCl(4)(RCN)(2)] (R = Me, Et) with ethanol allowed the isolation of trans-[PtCl(4)[E-NH[double bond]C(R)OEt](2)]. The latter were reduced selectively, by the ylide Ph(3)P[double bond]CHCO(2)Me, to trans-[PtCl(2)[E-NH[double bond]C(R)OEt](2)]. The complexed imino esters NH[double bond]C(R)OEt were liberated from the platinum(II) complexes by reaction with 2 equiv of 1,2-bis(diphenylphosphino)ethane (dppe) in chloroform; the cationic complex [Pt(dppe)(2)]Cl(2) precipitates almost quantitatively from the reaction mixture and can be easily separated by filtration to give a solution of NH[double bond]C(R)OEt with a known concentration of the imino ester. The imino esters efficiently couple with the coordinated nitriles in trans-[PtCl(4)(EtCN)(2)] to give, as the dominant product, [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] containing a previously unknown linkage, i.e., ligated N-(1-imino-propyl)-alkylimidic acid ethyl esters. In addition to [PtCl(4)[NH[double bond]C(Et)N[double bond]C(Et)OEt](2)], another compound was generated as the minor product, i.e., [PtCl(4)(EtCN)[NH[double bond]C(Et)N[double bond]C(Et)OEt]], which was reduced to [PtCl(2)(EtCN)[NH[double bond]C(Et)N[double bond]C(Et)OEt]], and this complex was characterized by X-ray single-crystal diffraction. The platinum(IV) complexes [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] are unstable toward hydrolysis and give EtOH and the acylamidine complexes trans-[PtCl(4)[Z-NH[double bond]C(Et)NHC(R)[double bond]O](2)], where the coordination to the Pt center results in the predominant stabilization of the imino tautomer NH[double bond]C(Et)NHC(R)[double bond]O over the other form, i.e., NH(2)C(Et)[double bond]NC(R)[double bond]O, which is the major one for free acylamidines. The structures of trans-[PtCl(4)[Z-NH[double bond]C(Et)NHC(R)[double bond]O](2)] (R = Me, Et) were determined by X-ray studies. The complexes [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] were reduced to the appropriate platinum(II) compounds [PtCl(2)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)], which, similarly to the appropriate Pt(IV) compounds, rapidly hydrolyze to yield the acylamidine complexes [PtCl(2)[NH[double bond]C(Et)NHC(R)[double bond]O](2)] and EtOH. The latter acylamidine compounds were also prepared by an alternative route upon reduction of the corresponding platinum(IV) complexes. Besides the first observation of the platinum(IV)-mediated nitrile-imine ester integration, this work demonstrates that the application of metal complexes gives new opportunities for the generation of a great variety of imines (sometimes unreachable in pure organic chemistry) in metal-mediated conversions of organonitriles, the "storage" of imino species in the complexed form, and their synthetic utilization after liberation.  相似文献   
40.
Sequential displacement of both N2 ligands from cis-[Mo(N2)2(PMe2Ph)4] by CNMe occurs by a dissociative (Id) mechanism (k2/k1~5,k1 0.020 min?1 at 273 K) via the intermediate cis-[Mo(N2)(CNMe)(PMe)2Ph)4] For t-BuNC substitution, the only detected intermediate appears to be [Mo(CNBu-t)(PMe2Ph)4] and no intermediate was detected in reactions of trans-[Mo(N2)2(Ph2PCH2CH2PPh2)2] with CNMe. N2 appears to be labilised by cis-ligands in the order t-BuNC > CNMe > N2 > NCR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号