首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3941篇
  免费   150篇
  国内免费   46篇
化学   2563篇
晶体学   28篇
力学   155篇
综合类   2篇
数学   585篇
物理学   804篇
  2023年   25篇
  2022年   45篇
  2021年   58篇
  2020年   49篇
  2019年   52篇
  2018年   55篇
  2017年   20篇
  2016年   80篇
  2015年   75篇
  2014年   101篇
  2013年   199篇
  2012年   259篇
  2011年   275篇
  2010年   144篇
  2009年   147篇
  2008年   237篇
  2007年   222篇
  2006年   223篇
  2005年   196篇
  2004年   180篇
  2003年   152篇
  2002年   116篇
  2001年   96篇
  2000年   98篇
  1999年   58篇
  1998年   56篇
  1997年   36篇
  1996年   74篇
  1995年   52篇
  1994年   50篇
  1993年   48篇
  1992年   45篇
  1991年   37篇
  1990年   29篇
  1989年   23篇
  1988年   27篇
  1987年   24篇
  1986年   20篇
  1985年   49篇
  1984年   33篇
  1983年   29篇
  1982年   28篇
  1981年   41篇
  1980年   30篇
  1979年   25篇
  1978年   31篇
  1977年   27篇
  1976年   20篇
  1975年   25篇
  1974年   37篇
排序方式: 共有4137条查询结果,搜索用时 0 毫秒
141.
To date, the number of published reports on the large‐volume preparation of polymer‐based monolithic chromatography adsorbents is still lacking and is of great importance. Many critical factors need to be considered when manufacturing a large‐volume polymer‐based monolith for chromatographic applications. Structural integrity, validity, and repeatability are thought to be the key factors determining the usability of a large‐volume monolith in a separation process. In this review, we focus on problems and solutions pertaining to heat dissipation, pore size distribution, “wall channel” effect, and mechanical strength in monolith preparation. A template‐based method comprising sacrificial and nonsacrificial techniques is possibly the method of choice due to its precise control over the porous structure. However, additional expensive steps are usually required for the template removal. Other strategies in monolith preparation are also discussed.  相似文献   
142.
We report the extraordinary performance of carbon‐coated sodium super ion conductor (NASICON)‐type LiTi2(PO4)3 as an ideal host matrix for reversible insertion of both Li and Na ions. The NASICON‐type compound was prepared by means of a Pechini‐type polymerizable complex method and was subsequently carbon coated. Several characterization techniques such as XRD, thermogravimetric analysis (TGA), field‐emission (FE) SEM, TEM, and Raman analysis were used to study the physicochemical properties. Both guest species underwent a two‐phase insertion mechanism during the charge/discharge process that was clearly evidenced from galvanostatic and cyclic voltammetric studies. Unlike that of Li (≈1.5 moles of Li), Na insertion exhibits better reversibility (≈1.59 moles of Na) while experiencing a slightly higher capacity fade (≈8 % higher than Li) and polarization (780 mV) than Li. However, excellent rate capability profiles were noted for Na insertion relative to its counterpart Li. Overall, the Na insertion properties were found to be superior relative to Li insertion, which makes carbon‐coated NASICON‐type LiTi2(PO4)3 hosts attractive for the development of next‐generation batteries.  相似文献   
143.
A total of fourteen pyrazoline derivatives were synthesized through cyclo-condensation reactions by chalcone derivatives with different types of semicarbazide. These compounds were characterized by IR, 1D-NMR (1H, 13C and Distortionless Enhancement by Polarization Transfer - DEPT-135) and 2D-NMR (COSY, HSQC and HMBC) as well as mass spectroscopy analysis (HRMS). The synthesized compounds were tested for their antituberculosis activity against Mycobacterium tuberculosis H37Ra in vitro. Based on this activity, compound 4a showed the most potent inhibitory activity, with a minimum inhibitory concentration (MIC) value of 17 μM. In addition, six other synthesized compounds, 5a and 5c–5g, exhibited moderate activity, with MIC ranges between 60 μM to 140 μM. Compound 4a showed good bactericidal activity with a minimum bactericidal concentration (MBC) value of 34 μM against Mycobacterium tuberculosis H37Ra. Molecular docking studies for compound 4a on alpha-sterol demethylase was done to understand and explore ligand–receptor interactions, and to hypothesize potential refinements for the compound.  相似文献   
144.
A universal selective image encryption algorithm, in which the spatiotemporal chaotic system is utilized, is proposed to encrypt gray-level images. In order to resolve the tradeoff between security and performance, the effectiveness of selective encryption is discussed based on simulation results. The scheme is then extended to encrypt RGB color images. Security analyses for both scenarios show that the proposed schemes achieve high security and efficiency.  相似文献   
145.
We demonstrate a high-power, narrowband pulsed source at 390 nm by two stages of frequency doubling in periodically poled MgO:LiNbO(3) and periodically poled KTiOPO(4) of an amplified, passively mode-locked fiber laser. With a frequency quadrupling efficiency of 5.5% and a 0.1 nm bandwidth, the 250 mW ultraviolet source is a suitable compact pump source for many entanglement-based quantum information processing tasks.  相似文献   
146.
Wong LK  Mandella MJ  Kino GS  Wang TD 《Optics letters》2007,32(12):1674-1676
We perform Monte Carlo simulations to show that the dual-axes (DA) confocal architecture has superior rejection of multiply scattered photons in tissue to that of single axis. As a result, the DA configuration provides improved signal-to-noise ratio and dynamic range, and thus is sensitive to ballistic photons from deeper within tissue, features that are particularly useful for performing vertical cross-sectional reflectance images in tissue.  相似文献   
147.
In this work, hydrogen plasma etching of surface oxides was successfully accomplished on thin (~100 µm) planar n‐type Czochralski silicon wafers prior to intrinsic hydrogenated amorphous silicon [a‐Si:H(i)] deposition for heterojunction solar cells, using an industrial inductively coupled plasma‐enhanced chemical vapour deposition (ICPECVD) platform. The plasma etching process is intended as a dry alternative to the conventional wet‐chemical hydrofluoric acid (HF) dip for solar cell processing. After symmetrical deposition of an a‐Si:H(i) passivation layer, high effective carrier lifetimes of up to 3.7 ms are obtained, which are equivalent to effective surface recombination velocities of 1.3 cm s–1 and an implied open‐circuit voltage (Voc) of 741 mV. The passivation quality is excellent and comparable to other high quality a‐Si:H(i) passivation. High‐resolution transmission electron microscopy shows evidence of plasma‐silicon interactions and a sub‐nanometre interfacial layer. Using electron energy‐loss spectroscopy, this layer is further investigated and confirmed to be hydrogenated suboxide layers. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
148.
149.
New organosilica precursors containing two triethoxysilyl groups suitable for the organosilica material formation through the sol‐gel process were designed and synthesised. These precursors display alkyne or azide groups for attaching targeted functional groups by copper‐catalysed azide–alkyne cycloaddition (CuAAC) and can be used for the preparation of functional organosilicas following two strategies: 1) the functional group is first appended by CuAAC under anhydrous conditions, then the functional material is prepared by the sol‐gel process; 2) the precursor is first subjected to the sol‐gel process, producing porous, clickable bridged silsesquioxanes or periodic mesoporous organosilicas (PMOs), then the desired functional groups are attached by means of CuAAC. Herein, we show the feasibility of both approaches. A series of bridged bis(triethoxysilane)s with different pending organic moieties was prepared, demonstrating the compatibility of the first approach with many functional groups. In particular, we demonstrate that organic functional molecules bearing only one derivatisation site can be used to produce bridged organosilanes and bridged silsesquioxanes. In the second approach, clickable PMOs and porous bridged silsesquioxanes were prepared from the alkyne‐ or azide‐containing precursors, and thereafter, functionalised with complementary model azide‐ or alkyne‐containing molecules. These results confirmed the potential of this approach as a general methodology for preparing functional organosilicas with high loadings of functional groups. Both approaches give rise to a wide range of new functional organosilica materials.  相似文献   
150.
Phosphoryl transfer reactions are ubiquitous in biology and the understanding of the mechanisms whereby these reactions are catalyzed by protein and RNA enzymes is central to reveal design principles for new therapeutics. Two of the most powerful experimental probes of chemical mechanism involve the analysis of linear free energy relations (LFERs) and the measurement of kinetic isotope effects (KIEs). These experimental data report directly on differences in bonding between the ground state and the rate‐controlling transition state, which is the most critical point along the reaction free energy pathway. However, interpretation of LFER and KIE data in terms of transition‐state structure and bonding optimally requires the use of theoretical models. In this work, we apply density‐functional calculations to determine KIEs for a series of phosphoryl transfer reactions of direct relevance to the 2′‐O‐transphosphorylation that leads to cleavage of the phosphodiester backbone of RNA. We first examine a well‐studied series of phosphate and phosphorothioate mono‐, di‐ and triesters that are useful as mechanistic probes and for which KIEs have been measured. Close agreement is demonstrated between the calculated and measured KIEs, establishing the reliability of our quantum model calculations. Next, we examine a series of RNA transesterification model reactions with a wide range of leaving groups in order to provide a direct connection between observed Brønsted coefficients and KIEs with the structure and bonding in the transition state. These relations can be used for prediction or to aid in the interpretation of experimental data for similar non‐enzymatic and enzymatic reactions. Finally, we apply these relations to RNA phosphoryl transfer catalyzed by ribonuclease A, and demonstrate the reaction coordinate–KIE correlation is reasonably preserved. A prediction of the secondary deuterium KIE in this reaction is also provided. These results demonstrate the utility of building up knowledge of mechanism through the systematic study of model systems to provide insight into more complex biological systems such as phosphoryl transfer enzymes and ribozymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号