首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   17篇
化学   127篇
物理学   2篇
  2023年   2篇
  2022年   5篇
  2021年   5篇
  2020年   9篇
  2019年   2篇
  2018年   2篇
  2016年   10篇
  2015年   6篇
  2014年   7篇
  2013年   6篇
  2012年   5篇
  2011年   17篇
  2010年   6篇
  2009年   2篇
  2008年   5篇
  2007年   7篇
  2006年   16篇
  2005年   9篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
排序方式: 共有129条查询结果,搜索用时 156 毫秒
111.
The mechanism of the trans to cis isomerization in Ru complexes with a chelating alkylidene group has been investigated by using a combined theoretical and experimental approach. Static DFT calculations suggest that a concerted single‐step mechanism is slightly favored over a multistep mechanism, which would require dissociation of one of the ligands from the Ru center. This hypothesis is supported by analysis of the experimental kinetics of isomerization, as followed by 1H NMR spectroscopy. DFT molecular dynamics simulations revealed that the variation of geometrical parameters around the Ru center in the concerted mechanism is highly uncorrelated; the mechanism actually begins with the transformation of the square‐pyramidal trans isomer, with the Ru?CHR bond in the apical position, into a transition state that resembles a metastable square pyramidal complex with a Cl atom in the apical position. This high‐energy structure collapses into the cis isomer. Then, the influence of the N‐heterocyclic carbene ligand, the halogen, and the chelating alkylidene group on the relative stability of the cis and trans isomers, as well as on the energy barrier separating them, was investigated with static calculations. Finally, we investigated the interconversion between cis and trans isomers of the species involved in the catalytic cycle of olefin metathesis; we characterized an unprecedented square‐pyramidal metallacycle with the N‐heterocyclic carbene ligand in the apical position. Our analysis, which is relevant to the exchange of equatorial ligands in other square pyramidal complexes, presents evidence for a remarkable flexibility well beyond the simple cistrans isomerization of these Ru complexes.  相似文献   
112.
A new family of Ru(II) complexes containing the tridentate meridional 2,2':6',2'-terpyridine (trpy) ligand, a C(2)-symmetric didentate chiral oxazolinic ligand 1,2-bis[4'-alkyl-4',5'-dihydro-2'-oxazolyl]benzene (Phbox-R, R = Et or iPr), and a monodentate ligand, of general formula [Ru(Y)(trpy)(Phbox-R)](n+) (Y = Cl, H(2)O, py, MeCN, or 2-OH-py (2-hydroxypyridine)) have been prepared and thoroughly characterized. In the solid state the complexes have been characterized by IR spectroscopy and by X-ray diffraction analysis in two cases. In solution, UV/Vis, cyclic voltammetry (CV), and one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy techniques have been used. We have also performed density functional theory (DFT) calculations with these complexes to interpret and complement experimental results. The oxazolinic ligand Phbox-R exhibits free rotation along the phenyloxazoline axes. Upon coordination this rotation is restricted by an energy barrier of 26.0 kcal mol(-1) for the case of [Ru(trpy)(Phbox-iPr)(MeCN)](2+) thus preventing its potential interconversion. Furthermore due to steric effects the two atropisomers differ in energy by 5.7 kcal mol(-1) and as a consequence only one of them is obtained in the synthesis. Subtle but important structural effects occur upon changing the monodentate ligands that are detected by NMR spectroscopy in solution and interpreted by using their calculated DFT structures.  相似文献   
113.
Based on an Atoms-in-Molecules (AIM) analysis, Matta et al. recently claimed evidence for the existence of hydrogen-hydrogen bonding between ortho-hydrogen atoms, pointing towards each other from adjacent phenyl groups in planar biphenyl. This AIM result is opposed to the classical view that nonbonded steric repulsion between the ortho-hydrogen atoms is responsible for the higher energy of the planar as compared to the twisted geometry of biphenyl. In the present work, we address the question if hydrogen-hydrogen bonding in biphenyl exists, as suggested by AIM, or not. To this end, we have analyzed the potential energy surface for internal rotation of biphenyl in terms of two interacting phenyl radicals using density functional theory (DFT) at BP86/TZ2P. A detailed analysis of the bonding mechanism and a quantitative bond energy decomposition in the framework of Kohn-Sham DFT show that Pauli (or overlap) repulsion, mainly between C(ortho)--H(ortho) phenyl MOs, prevents biphenyl from being planar and forces it to adopt a twisted equilibrium geometry. Furthermore, a derivative of biphenyl in which all four ortho-hydrogen atoms have been removed does adopt a planar equilibrium geometry. Thus, our results confirm the classical view of steric repulsion between ortho-hydrogen atoms in biphenyl and they falsify the hypothesis of hydrogen-hydrogen bonding.  相似文献   
114.
In this work we report the first example of a trinuclear Pt(II) complex with Pt-Pt-Pt bonds that are not facilitated by direct intervention of bridging ligands but are partially held by the attractive pi-pi stacking interaction between the phenyl units of the 4,4'-dimethyl-2,2'-bipyridyl ligands. The effect of the pi-pi stacking interactions on the strength and length of the Pt-Pt bond has been discussed using reduced models of the interacting moieties in which the aromatic rings have been removed. The nature of the Pt-Pt bonds has been studied through energy decomposition and atoms-in-molecules analyses. The results indicate that the relatively strong (about 40 kcal mol(-1)) Pt-Pt metallic bond has similar covalent and ionic contributions.  相似文献   
115.
116.
117.
The local aromaticities of the six-membered rings in the two lowest-lying singlet states of [n]acenes (n = 6-9) have been assessed by means of three probes of local aromaticity based on structural, magnetic, and electron delocalization properties. Important differences between the local aromaticities of the closed-shell and diradical singlet electronic states are found. Thus, while the inner rings have the largest aromatic character in the closed-shell singlet states, the outer rings become the most aromatic for the diradical singlet states.  相似文献   
118.
Theoretical and computational investigations of the excess charge distribution (ECD) in molecular complexes have attracted considerable attention as ECD is closely related to electronic properties of organic semiconductors, such as the efficiency of photoinduced charge separation in organic solar cells and charge transport in DNA and proteins. In this paper, we analyze the ECD in several representative models on the basis of ab initio and DFT calculations. We consider how changes in the reorganization energy, electronic coupling and charge transfer energy affect the ECD in the systems. In particular, we compare ECD in π stacks of polycyclic aromatic hydrocarbons and DNA nucleobases. While the π interaction between subunits in the systems is similar in both cases, ECD is quite different: the excess charge is found to be completely delocalized over the hydrocarbon stacks but strongly confined to a single nucleobase in DNA stacks. We also discuss the effects of conformational fluctuations on ECD in the stacks. Finally, ECD in amino acids and its dependence on the conformational changes are briefly considered.  相似文献   
119.
Density functional theory (DFT) calculations have been carried out for a series of Cu(I) complexes bearing N-hexadentate macrocyclic dinucleating ligands and for their corresponding peroxo species (1c-8c) generated by their interaction with molecular O2. For complexes 1c-7c, it has been found that the side-on peroxodicopper(II) is the favored structure with regard to the bis(mu-oxo)dicopper(III). For those complexes, the singlet state has also been shown to be more stable than the triplet state. In the case of 8c, the most favored structure is the trans-1,2-peroxodicopper(II) because of the para substitution and the steric encumbrance produced by the methylation of the N atoms. Cu(II) complexes 4e, 5e, and 8e have been obtained by O2 oxidation of their corresponding Cu(I) complexes and structurally and magnetically characterized. X-ray single-crystal structures for those complexes have been solved, and they show three completely different types of Cu(II)2 structures: (a) For 4e, the Cu(II) centers are bridged by a phenolate group and an external hydroxide ligand. The phenolate group is generated from the evolution of 4c via intramolecular arene hydroxylation. (b) For 5e, the two Cu(II) centers are bridged by two hydroxide ligands. (c) For the 8e case, the Cu(II) centers are ligated to terminally bound hydroxide ligands, rare because of its tendency to bridge. The evolution of complexes 1c-8c toward their oxidized species has also been rationalized by DFT calculations based mainly on their structure and electrophilicity. The structural diversity of the oxidized species is also responsible for a variety of magnetic behavior: (a) strong antiferromagnetic (AF) coupling with J = -482.0 cm(-1) (g = 2.30; rho = 0.032; R = 5.6 x 10(-3)) for 4e; (b) AF coupling with J = -286.3 cm(-1) (g = 2.07; rho = 0.064; R = 2.6 x 10(-3)) for 5e; (c) an uncoupled Cu(II)2 complex for 8e.  相似文献   
120.
Non‐covalent interactions involving multicenter multielectron skeletons such as boron clusters are rare. Now, a non‐covalent interaction, the nido‐cage???π bond, is discovered based on the boron cluster C2B9H12? and an aromatic π system. The X‐ray diffraction studies indicate that the nido‐cage???π bonding presents parallel‐displaced or T‐shaped geometries. The contacting distance between cage and π ring varies with the type and the substituent of the aromatic ring. Theoretical calculations reveal that this nido‐cage???π bond shares a similar nature to the conventional anion???π or π???π bonds found in classical aromatic ring systems. This nido‐cage???π interaction induces variable photophysical properties such as aggregation‐induced emission and aggregation‐caused quenching in one molecule. This work offers an overall understanding towards the boron cluster‐based non‐covalent bond and opens a door to investigate its properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号