首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   1篇
  国内免费   1篇
化学   129篇
力学   4篇
数学   3篇
物理学   20篇
  2019年   2篇
  2017年   2篇
  2015年   2篇
  2014年   4篇
  2013年   11篇
  2012年   7篇
  2011年   2篇
  2010年   6篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   6篇
  2005年   6篇
  2004年   1篇
  2003年   5篇
  2002年   6篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   4篇
  1996年   6篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   5篇
  1973年   8篇
  1972年   1篇
  1971年   3篇
  1970年   1篇
  1969年   1篇
  1968年   3篇
  1967年   2篇
  1966年   2篇
  1944年   1篇
排序方式: 共有156条查询结果,搜索用时 15 毫秒
121.
The stable cyclic ketene acetal, 2-methylene-1,3-dioxepane, 7, has been polymerized cationically in pentane, CH2Cl2 and THF at 25°C to form a polymer which is composed of both ring-opened (40–50%) and ring-retained (50–60%) structures. Initiation was catalyzed by using H2SO4-supported on activated carbon black. This unique outcome differs significantly from the cationic polymerization of several other five- and six-membered ring cyclic ketene acetals which gave 100% 1,2-vinylpolymerization under these conditions. As the polymerization temperature increased in cationic polymerization of 7 the ring-opened content increased and the molecular weight of the polymers decreased in such solvents as cyclohexane, 1,2-dichloroethane, dimethoxyethane, and bis-(2-methoxyethyl) ether. The mechanism of this polymerization is discussed. This research also illustrated the ability to initiate the cationic polymerization of cyclic ketene acetals by acidified carbon black while avoiding subsequent polymer decomposition. © 1997 John Wiley & Sons, Inc.  相似文献   
122.
Cationic copolymerizations of 4-methyl-2-methylene-1,3-dioxane, 2 (M1), with 2-methylene-1,3-dioxane, 1 (M2); of 4,4,6-trimethyl-2-methylene-1,3-dioxane, 3 (M1), with 2-methylene-1,3-dioxane, 1 (M2); of 4-methyl-2-methylene-1,3-dioxolane, 5 (M1), with 2-methylene-1,3-dioxolane, 4 (M2); and of 4,5-dimethyl-2-methylene-1,3-dioxolane, 6 (M1), with 2-methylene-1,3-dioxolane, 4 (M2) were conducted. The reactivity ratios for these four types of copolymerizations were r1 = 1.73 and r2 = 0.846; r1 = 2.26 and r2 = 0.310; r1 = 1.28 and r2 = 0.825; r1 = 2.23 and r2 = 0.515, respectively. The relative reactivities of these monomers towards cationic polymerization are: 3 > 2 > 1; and 6 > 5 > 4. With both five- and six-membered ring cyclic ketene acetals, the reactivity increased with increasing methyl substitution on the ring. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 861–871, 1998  相似文献   
123.
124.
The relationship between the relative reactivities of ten cyclic ketene acetals and their structures was determined via cationic copolymerizations of eight different monomer pairs. Thus, 2-methylene-1,3-dioxolane (1) was copolymerized with 2-methylene-4-methyl-1,3-dioxolane (2), 2-methylene-4,5-dimethyl-1,3-dioxolane (3), 2-methylene-4,4,5,5-tetramethyl-1,3-dioxolane (4), 2-methylene-4-phenyl-1,3-dioxolane (5), and 2-methylene-4-(t-butyl)-1,3-dioxolane (6). Also 2-methylene-1,3-dioxane (7) was copolymerized with 2-methylene-4-methyl-1,3-dioxane (8), 2-methylene-4,4,6-trimethyl-1,3-dioxane (9), and 2-methylene-4-isopropyl-5,5-dimethyl-1,3-dioxane (10). The relative reactivities of these monomers are: 3 > 5 > 4 > 2 > 1 > 6; and 10 > 9 > 8 > 7. In spite of steric demands, substituents at the 4- or 5-positions in 2-methylene-1,3-dioxolane and substituents at the 4- or 6-positions in 2-methylene-1,3-dioxane serve to increase the copolymerization reactivity. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2841–2852, 1999  相似文献   
125.
Three unsubstituted cyclic ketene acetals (CKAs), 2-methylene-1,3-dioxolane, 1a , 2-methylene-1,3-dioxane, 2a , and 2-methylene-1,3-dioxepane, 3a , undergo exclusive 1,2-addition polymerization at low temperatures, and only poly(CKAs) are obtained. At higher temperatures, ring-opening polymerization (ROP) can be dominant, and polymers with a mixture of ester units and cyclic ketal units are obtained. When the temperature is raised closer to the ceiling temperature (Tc) of the 1,2-addition propagation reaction, 1,2-addition polymerization becomes reversible and ring-opened units are introduced to the polymer. The ceiling temperature of 1,2-addition polymerization varies with the ring size of the CKAs (lowest for 3a , highest for 2a ). At temperatures below 138°C, 2-methylene-1,3-dioxane, 2a , underwent 1,2-addition polymerization. Insoluble poly(2-methylene-1,3-dioxane) 100% 1,2-addition was obtained. At above 150°C, a soluble polymer was obtained containing a mixture of ring-opened ester units and 1,2-addition cyclic ketal units. 2-Methylene-1,3-dioxolane, 1a , polymerized only by the 1,2-addition route at temperatures below 30°C. At 67–80°C, an insoluble polymer was obtained, which contained mostly 1,2-addition units but small amounts of ester units were detected. At 133°C, a soluble polymer was obtained containing a substantial fraction of ring-opened ester units together with 1,2-addition cyclic ketal units. 2-Methylene-1,3-dioxepane, 3a , underwent partial ROP even at 20°C to give a soluble polymer containing ring-opened ester units and 1,2-addition cyclic ketal units. At −20°C, 3a gave an insoluble polymer with 1,2-addition units exclusively. Several catalysts were able to initiate the ROP of 1a, 2a , and 3a , including RuCl2(PPh3)3, BF3, TiCl4, H2SO4, H2SO4 supported on carbon, (CH3)2CHCOOH, and CH3COOH. The initiation by Lewis acids or protonic acids probably occurs through an initial protonation. The propagation step of the ROP proceeds via an SN2 mechanism. The chain transfer and termination rates become faster at high temperatures, and this may be the primary reason for the low molecular weights (Mn ≤ 103) observed for all ring-opening polymers. The effects of temperature, monomer and initiator concentration, water content, and polymerization time on the polymer structure have been investigated during the Ru(PPh3)3Cl2-initiated polymerization of 2a . High monomer concentrations ([M]/[ln]) increase the molecular weight and decreased the amount of ring-opening. Higher initiator concentrations (Ru(PPh3)3Cl2) and longer reaction times increase molecular weight in high temperature reactions. Successful copolymerization of 2a with hexamethylcyclotrisiloxane was initiated by BF3OEt2. The copolymer obtained displayed a broad molecular weight distribution; M̄n = 6,490, M̄w = 15,100, M̄z = 44,900. This polymer had about 47 mol % of ( Me2SiO ) units, 35 mol % of ring-opened units, and 18 mol % 1,2-addition units of 2a . © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3655–3671, 1997  相似文献   
126.
Stable polymers were made by the cationic 1,2-polymerization of cyclic ketene acetals initiated by acid-washed glassware or acid-washed glass beads. Among several reactions possible for the very reactive cyclic ketene acetals, only the corresponding acetals of polyketene were formed. These structures were demonstrated by FTIR, 1H-NMR, and 13C-NMR analyses. © 1996 John Wiley & Sons, Inc.  相似文献   
127.
We present the design and characterization of a femtosecond high-intensity laser system emitting a near-diffraction-limited beam. This system was dimensioned in order to reach intensities in excess of 1020 W/cm2 at a high repetition rate for ultrahigh-field physics experiments. We describe the improvements that were added to a conventional chirp pulse amplification configuration in order to decrease the deleterious effects of gain narrowing, gain shifting, thermal focusing in the amplifier stages, and spatial degradation due to multipass amplification processes. Received: 4 January 2002 / Published online: 14 May 2002  相似文献   
128.
β‐Methyl‐α‐methylene‐γ‐butyrolactone (MMBL) was synthesized and then was polymerized in an N,N‐dimethylformamide (DMF) solution with 2,2‐azobisisobutyronitrile (AIBN) initiation. The homopolymer of MMBL was soluble in DMF and acetonitrile. MMBL was homopolymerized without competing depolymerization from 50 to 70 °C. The rate of polymerization (Rp) for MMBL followed the kinetic expression Rp = [AIBN]0.54[MMBL]1.04. The overall activation energy was calculated to be 86.9 kJ/mol, kp/kt1/2 was equal to 0.050 (where kp is the rate constant for propagation and kt is the rate constant for termination), and the rate of initiation was 2.17 × 10?8 mol L?1 s?1. The free energy of activation, the activation enthalpy, and the activation entropy were 106.0, 84.1, and 0.0658 kJ mol?1, respectively, for homopolymerization. The initiation efficiency was approximately 1. Styrene and MMBL were copolymerized in DMF solutions at 60 °C with AIBN as the initiator. The reactivity ratios (r1 = 0.22 and r2 = 0.73) for this copolymerization were calculated with the Kelen–Tudos method. The general reactivity parameter Q and the polarity parameter e for MMBL were calculated to be 1.54 and 0.55, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1759–1777, 2003  相似文献   
129.
The reactions of 2-methylimidazoline and 2-methyl-1,4,5,6-tetrahydropyrimidine with 1,3-diacid chlorides, in the presence of Et3N in refluxing MeCN give highly functionalized potentially bioactive 1,8-naphthyridinetetraones. 2-Methylimidazoline and 2-methyl-1,4,5,6-tetrahydropyrimidine can be viewed as tridentate nucleophiles which give four consecutive tandem nucleophilic attacks on electrophiles.  相似文献   
130.
N,N′-Dimethyl cyclic ketene N,N′-acetals react with two or three equivalents of isocyanates to generate tetrasubstituted push-pull alkene derivatives in one-pot sequential reactions. X-ray crystallography showed significant elongations and out of plane distorsions of the polarized carbon-carbon double bonds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号