首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   0篇
化学   113篇
晶体学   8篇
数学   1篇
物理学   7篇
  2019年   1篇
  2015年   1篇
  2013年   3篇
  2012年   2篇
  2011年   7篇
  2008年   2篇
  2007年   8篇
  2006年   8篇
  2005年   1篇
  2004年   4篇
  2003年   3篇
  2002年   9篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1991年   8篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   4篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1981年   4篇
  1980年   2篇
  1972年   5篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有129条查询结果,搜索用时 187 毫秒
11.
12.
13.
14.
The hydrogen release behavior of the quaternary hydride LiB(0.33)N(0.67)H(2.67) has been successfully improved through the incorporation of small quantities of noble metal. Adding 5 wt % Pd either as Pd metal particles or as PdCl(2) reduced the temperature T(1/2) corresponding to the midpoint of the hydrogen release reaction by DeltaT(1/2) = -43 degrees C and -76 degrees C, respectively. PtCl(2) and Pt nanoparticles supported on a Vulcan carbon substrate proved to be even more effective, with DeltaT(1/2) = -90 degrees C. The amount of NH(3) released during dehydrogenation is reduced compared to that from additive-free material, and, more importantly, at temperatures below 210 degrees C hydrogen is released with no detectable NH(3). In contrast to additive-free LiB(0.33)N(0.67)H(2.67), which melts completely above 190 degrees C and releases hydrogen from the liquid state only above approximately 250 degrees C, hydrogen release from LiB(0.33)N(0.67)H(2.67) + 5 wt % Pt/Vulcan carbon is accompanied by partial melting plus a cascade through a series of solid intermediate phases. Calorimetric measurements indicate that both additive-free and Pt-added LiB(0.33)N(0.67)H(2.67) release hydrogen exothermically, and hence the reverse reaction is thermodynamically unfavorable. By exposing partially dehydrogenated samples to high H(2) pressures at modest temperatures, fractional hydrogen uptake (roughly 15% of the released hydrogen) has been achieved. The mechanism by which noble metals promote hydrogen release is not known, but the behavior is consistent with that expected for a catalyst, including a large effect with small additions and saturation of the effect at low concentration.  相似文献   
15.
To relate the molecular electrostatic potential to the biological activities of estrogens, a comparative charge density study of different derivatives has been initiated. The second completed charge density analysis of this series for 17beta-estradiol*urea is presented here. This is a large organic system with 52 atoms in a noncentrosymmetric space group, therefore special tools such as an optimal coordinate system and slow, initially constrained refinement have been used to accomplish this study. Our results for the urea molecule reasonably agree with previous experimental and theoretical results. In the 17beta-estradiol molecule, the oxygen atoms appear to be close to sp3 in shape, exhibiting two consistent, distinct lone pairs despite different chemical environments. No significant interaction of the hydroxyl group oxygen with the orbitals of the aromatic ring is observed. Analysis of the electrostatic potential revealed that the negative potential in the lone pair region of the two oxygen atoms is quite different. The topological analysis of the electron density has been performed, and the atomic charges have been estimated.  相似文献   
16.
Salts of 4-aminonaphthalene-1-sulfonate with divalent Mg, Mn, Co, and Ni cations have been crystallized and their structures determined by single crystal X-ray methods. The Mg and Mn salts are isostructural. Crystal data for hexa-aquamagnesium(II) 4-aminonaphthalene-1-sulfonate dihydrate, [Mg(H2O)6](H2NC10H6SO3)2 2H 2O: monoclinic, P21/c, Z = 2, a = 8.622(3), b = 7.043(3), c = 23.178(3) Å, =93.78(2)°, V = 1404.3(7) Å3; hexa-aquamanganese(II) 4-aminonaphthalene-1-sulfonate dihydrate, [Mn(H2O)6](H2NC10H6SO3)2 2H 2O: monoclinic, P21/c, Z = 2, a = 8.652(3), b = 7.031(4), c = 23.402(2) Å, =93.09(2)°, V = 1421.5(9) Å3. The structures are composed of alternating layers of octahedral metal–aqua complexes and sulfonate anions linked by an extensive network of hydrogen bonds. The extra water molecules of crystallization are located in the hexa-aquametal cation layers. The repeat unit along the c axis is a double layer. The Co and Ni compounds are isostructural with each other, but compared to the Mg and Mn compounds, have a strikingly different structure. Crystal data for hexa-aquacobalt(II) 4-aminonaphthalene-1-sulfonate trihydrate, [Co(H2O)6](H2NC10H6SO3)2 3H 2O: orthorhombic, Pbca, Z = 8, a = 8.518(1), b = 14.327(2), c = 45.367(6) Å, V = 5536(1) Å3; hexa-aquanickel(II) 4-aminonaphthalene-1-sulfonate trihydrate, [Ni(H2O)6](H2NC10H6SO3)2 3H 2O: orthorhombic, Pbca, Z = 8, a = 8.4976(6), b = 14.288(1), c = 45.076(3) Å, V = 5472.9(7) Å3. These structures also contain layers of octahedral hexa-aquametal complexes and additional water molecules of crystallization sandwiched by layers of sulfonate anions, however the stacking pattern is more complex with a quadruple layer repeat unit and two different types of anion layers.  相似文献   
17.
Two energetic salts of the melaminium cation have been prepared and structurally characterized from room temperature X-ray single crystal diffraction data. Melaminium dinitramide (I), triclinic, P1¯, a = 6.6861(11), b = 6.9638(16), c = 10.447(2) Å , = 99.07(3), = 98.30(3), = 108.50(3)°, V = 445.6(2) Å3, and Z = 2. Melaminium nitrate (II), monoclinic, P21/c, a = 3.5789(7), b = 20.466(4), c = 10.060(2) Å, = 94.01(2)°, V = 735.0(3) Å3, and Z = 4. The crystal structures of both salts show distinct monoprotonated melaminium cations and dinitramide- or nitrate anions, respectively. Efficient packing in the solid state is achieved by extensive hydrogen bonding between two-dimensional zigzag ribbons of the melaminium cations and the respective anions resulting in high densities of the solid state structures of 1.74 (I) and 1.71 g/cm3 (II).  相似文献   
18.
The X-ray crystal structure of the title compound is reported. Crystal data: T = 100 K, monoclinic, P21/n, a = 8.2990(17), b = 13.2300(26), c = 12.0350(24) Å, = 93.676(30)°, V = 1318.7 (5) Å3, and R = 0.0368. The methylene carbon atoms in the cyclohexadiene ring are disordered over two positions above and below the ring plane. The chlorine substituted endocyclic double bond deviates from planarity with an angle of 8.10(13)° toward the endo-face. The facially differentiated 1,3-cyclohexadiene moiety is only slightly pyramidalized, deviating 1.75(20)° also toward the endo-face of the tricyclic system.  相似文献   
19.
The tricarbonylchromium unit bound to the arene ring of the chiral title complex, [Cr(C19H26O3)(CO)3], is rotated by ca 25° in agreement with the proposed mechanism for 1,5‐asymmetric induction of nucleophilic attack.  相似文献   
20.
Single crystal neutron diffraction data have been collected on a sample of enolized 3,4-diacetyl-2,5-hexanedione (tetraacetylethane, TAE) at five temperatures between 20 and 298 K to characterize the temperature-dependent behavior of the short, strong, intramolecular hydrogen bond. Upon decreasing the temperature from 298 K to 20 K, the O2-H1 distance decreases from 1.171(11) to 1.081(2) A and the O1...H1 distance increases from 1.327(10) to 1.416(6) A. The convergence of the C-O bond lengths from inequivalent distances at low temperature to identical values (1.285(4) A) at 298 K is consistent with a resonance-assisted hydrogen bond. However, a rigid bond analysis indicates that the structure at 298 K is disordered. The disorder vanishes at lower temperatures. Short intermolecular C-H...O contacts may be responsible for the ordering at low temperature. The intramolecular O...O distance (2.432 +/- 0.006 A) does not change with temperature. X-ray data at 20 K were measured to analyze the charge density and to gain additional insight into the nature of the strong hydrogen bond. Quantum mechanical calculations demonstrate that periodic boundary conditions provide significant enhancement over gas phase models in that superior agreement with the experimental structure is achieved when applying periodicity. One-dimensional potential energy calculations followed by quantum treatment of the proton reproduce the location of the proton nearer to the O2 site reasonably well, although they overestimate the O-H distance at low temperatures. The choice of the single-point energy calculation strategy for the proton potential is justified by the fact that the proton is preferably located nearer to O2 rather than being equally distant to O1 and O2 or evenly distributed (disordered) between them.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号