首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
化学   38篇
物理学   6篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2009年   1篇
  2008年   4篇
  2006年   4篇
  2005年   9篇
  2004年   1篇
  2003年   2篇
  2000年   1篇
  1999年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
排序方式: 共有44条查询结果,搜索用时 31 毫秒
21.
Nanomaterials exist in the interstellar medium, in biology, in art and also metallurgy. Assemblies of nanomaterials were observed in the early solar system as well as silicate particle opals. The latter exhibits unusual optical properties directly dependent on particle ordering in 3D superlattices.The optical properties of noble metal nanoparticles (Ag, Au and Cu) change with the ordering of atoms in the nanocrystals, called nanocrystallinity. The vibrational properties related to nanocrystallinity markedly differ with the vibrational modes studied. Hence, a drastic effect on nanocrystallinity is observed on the confined acoustic vibrational property of the fundamental quadrupolar modes whereas the breathing acoustic modes remain quasi-unchanged. The mechanical properties characterized by the Young's modulus of multiply twinned particle (MTP) films are markedly lower than those of single nanocrystals.Two fcc supracrystal growth mechanisms, supported by simulation, of Au nanocrystals are proposed: heterogeneous and homogeneous growth processes. The final morphology of nanocrystal assemblies, with either films by layer-by-layer growth characterized by their plastic deformation or well-defined shapes grown in solution, depends on the solvent used to disperse the nanocrystals before the evaporation process.At thermodynamic equilibrium, two simultaneous supracrystal growth processes of Au nanocrystals take place in solution and at the air-liquid interface. These growth processes are rationalized by simulation. They involve, on the one hand, van der Waals interactions and, on the other hand, the attractive interaction between nanocrystals and the interface.Ag nanocrystals (5 nm) self-order in colloidal crystals with various arrangements called supracrystallinities. As in bulk materials, phase diagrams of supracrystals with structural transitions from face-centered-cubic (fcc) to hexagonal-close-packed (hcp) and body-centered-cubic (bcc) structures are observed. They depend on the chain length of the coating agent and on the solvent used to disperse the nanocrystals before evaporation. The transition from fcc to hcp is attributed to specific stacking processes depending on evaporation kinetics whereas the formation of bcc supracrystals is attributed to van der Waals attractions.These results open up a new research area, which currently suffers from an extensive lack of knowledge.  相似文献   
22.
Mesoscopic patterns of cobalt nanocrystals produced by applying a magnetic field perpendicular to the substrate during the deposition process are presented. These mesoscopic patterns markedly differ with the size distribution of the cobalt nanocrystals. Well-defined columns are produced when the size distribution of cobalt nanocrystals is low; conversely, the coalescence of columns with formations of labyrinths occurs for a large size distribution. A formation mechanism of these structures is proposed.  相似文献   
23.
In this paprr we are presenting the synthesss “in situ” of nanoparticles in reverse micelles. In the case of aggregates containing copper ions, it is possible to form metallic particles surrounded or not by an oxide layer. By mixing aggregates containing cadmium and sulphide ions, CdS particles are formed. The size and polydispersity of the particles are controlled. The photoelectron transfer reaction depends mainly on the surface composition. In the range of 1 to 5 nm, the efficiency in the electron transfer does not depend on the size of the particle. The reverse micelles are formed by using either sodium di(2-ethyl hexyl)sulfosuccinate, usually called {AOT} or mixed bivalent and sodium di(2-ethyl hexyl)sulfosuccinate {AOl/M(AOT)2}.  相似文献   
24.
The ordering of silver nanocrystals is tuned from amorphous aggregates to highly well-ordered, face-centered cubic supra-crystals, using various substrates and controlling their temperature to obtain this. Low-frequency Raman scattering, for the first time, demonstrates vibrational coherence in fcc supra-crystals of nanocrystals. This is shown by a narrowing of the peak corresponding to the quadrupolar modes of the nanocrystals. However, this is obtained when the supra-crystals are smaller than the excitation wavelength. When the supra-crystals are larger, the narrowing cannot be observed. Furthermore, for any size of the supra-crystals, a shift to low frequency of the Raman peak due to the Lorentz field effect is seen.  相似文献   
25.
The energy relaxation of the electrons in the conduction band of 12 and 30 nm diameter copper nanoparticles in colloidal solution was investigated using femtosecond time-resolved transient spectroscopy. Experimental results show that the hot electron energy relaxation is faster in 12 nm copper nanoparticles (0.37 ps) than that in 30 nm copper nanoparticles (0.51 ps), which is explained by the size-dependent electron-surface phonon coupling. Additional mechanisms involving trapping or energy transfer processes to the denser surface states (imperfection) in the smaller nanoparticles are needed to explain the relaxation rate in the 12 nm nanoparticles. The observed fluorescence quantum yield from these nanoparticles is found to be enhanced by roughly 5 orders of magnitude for the 30 nm nanoparticles and 4 orders of magnitude for the 12 nm nanoparticles (relative to bulk copper metal). The increase in the fluorescence quantum yield is attributed to the electromagnetic enhancement of the radiative recombination of the electrons in the s-p conduction band below the Fermi level with the holes in the d bands due to the strong surface plasmon oscillation in these nanoparticles.  相似文献   
26.
We report on the experimental observation of STM-induced photon emission in ultrahigh vacuum on a network of 4-nm silver spheres. The spheres are covered by a dielectric, electrically insulating, organic layer and deposited on Au(111). The bias-dependent spatial distribution of the photon emission rates reveals the electric-field distribution of the different coupled plasmon modes in this model.  相似文献   
27.
Natural systems give the route to design periodic arrangements with mesoscopic architecture using individual nanocrystals as building blocks forming colloidal crystals or supracrystals. The collective properties of such supracrystals are one of the main driving forces in materials research for the 21st century with potential applications in electronics or biomedical environments. Here we describe two simultaneous supracrystal growth processes from gold nanocrystal suspension, taking place in solution and at the air-liquid interface. Furthermore, the growth processes involve the crystallinity selection of nanocrystals and induce marked changes in the supracrystal mechanical properties.  相似文献   
28.
We report a solution-phase annealing of spherical Co nanocrystals synthesized in reverse micelles and coated with dodecanoic acid. The deposition of a drop of solution on a transmission electron microscope grid shows that a progressive increase in the temperature to 316 °C results in the progressive crystallographic transition from a polycrystalline and probably face-centered cubic Co phase to the single-crystalline hexagonal close-packed (hcp) Co phase. These nanocrystals are highly stable against oxidation and coalescence. We stress that, to our knowledge, this constitutes the first example in the literature of pure hcp-Co spherical single crystals dispersed in solution. These nanocrystals can be freely manipulated and, due to their low size dispersion, can self-organize on various substrates.  相似文献   
29.
Water in oil droplets are used to control the size of silver metal nanoparticles. After synthesis, the silver metal particles are extracted from reverse micelles and redispersed in a non polar solvent. By increasing the size of the water droplets the average size of silver nanoparticles increases from 2 nm to 7 nm with a rather high size distribution. To narrow the panicle distribution a size selected precipitation method is used. By deposition of a dilute solution containing the coated particles on a carbon grid, the particles arrange themselves in a monolayer organized in a hexagonal network. At high particle concentration, the particles are organized in multilayers forming microcrystals arranged in a face centered cubic structure. The optical properties of the silver nanoparticles isolated in micellar solution or self-assembled in 2D or 3D supperlattices are reported.  相似文献   
30.
Solid structures made of collapsed cylinders organized in hexagonal, stripes and wavy line-like structures are fabricated by slow evaporation of maghemite nanocrystals dispersed in hexane and subjected to an applied field perpendicular to the substrate. The sizes of the experimental structures are well described by a theory based on the minimization of the total free energy. Comparison between experiment and theory shows that the structures are explained by a labyrinthine instability enabled by a colloidal liquid-gas phase transition during the evaporation process. From the theoretical model and experimental data, it is concluded that the height determines the radius of the cylinders, whereas the phase ratio of the magnetic to the total volume and the field strength have little influence under the conditions studied here.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号