首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1120篇
  免费   39篇
  国内免费   3篇
化学   1009篇
晶体学   4篇
力学   7篇
数学   82篇
物理学   60篇
  2023年   5篇
  2022年   12篇
  2021年   21篇
  2020年   6篇
  2019年   16篇
  2018年   8篇
  2017年   5篇
  2016年   34篇
  2015年   30篇
  2014年   20篇
  2013年   66篇
  2012年   77篇
  2011年   95篇
  2010年   52篇
  2009年   40篇
  2008年   88篇
  2007年   102篇
  2006年   77篇
  2005年   91篇
  2004年   43篇
  2003年   37篇
  2002年   48篇
  2001年   19篇
  2000年   9篇
  1999年   11篇
  1998年   12篇
  1997年   10篇
  1996年   27篇
  1995年   6篇
  1994年   8篇
  1993年   7篇
  1992年   5篇
  1991年   8篇
  1990年   14篇
  1989年   3篇
  1988年   6篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1984年   13篇
  1983年   4篇
  1982年   3篇
  1981年   6篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1968年   1篇
  1967年   1篇
  1956年   1篇
排序方式: 共有1162条查询结果,搜索用时 445 毫秒
41.
The overall rates of reaction of 1-substltuted-1- (1-methyl-2-indolyl)ethenes with dimethyl acetylenedicarboxylate are considerably lower than those of the corresponding 2-vinyl- pyrroles. Steric interaction between the N-methyl group on the indole ring and the 1-substituent on the ethenyl group prevents the diene system adopting a coplanar cisoid configuration and, thereby, inhibits the π4 + π2 cycloaddition reaction of the system with dimethyl acetylenedicarboxylate. Under such conditions, the indolylethene preferentially undergoes a Michael addition reaction at the 3-position. The π4 + π2 cycloaddition reaction is promoted at elevated temperatures. No evidence was found for a Cope rearrangement of the Michael adducts to give the dihydrocarbazole.  相似文献   
42.
Summary Copper(II) and nickel(II) complexes with the Schiff base derived from 2-(2-aminophenyl)benzimidazole and salicylaldehyde, L, have been prepared. They are of the general types ML2X2 (M = Ni or Cu and X = Cl, Br, NO3 or ClO4) and NiL(NCS)2.The compounds have been characterized by elemental analyses, magnetic measurements, e.s.r., electronic and i.r. spectra studies. The i.r. spectra suggest that the molecule, and not the anion, of the Schiff base is coordinated as a bidentate ligand with the metal ion. Possible structures for the complexes have been proposed.  相似文献   
43.
The selective determination of trimethylamine (TMA) in air by liquid chromatography is reported. Sampling is effected by flushing air through C18-packed solid-phase extraction (SPE) cartridges at a flow rate of 15 mL/min for 15 min. Next, TMA is desorbed from the cartridges and injected into the chromatographic system. The analyte is then selectively retained on a precolumn (20 mm x 2.1 mm i.d., packed with 30 microm, Hypersil C18 phase), and derivatized on-line by injecting 9-fluorenylmethyl chloroformate (FMOC). Finally, the TMA-FMOC derivative is transferred to the analytical column (125 mm x 4 mm i.d., LiChrospher 100 RP18, 5 microm), and monitored at 262 nm. The method was applied to the measurement of TMA in air in the 0.25-2.5 microg interval (equivalent to concentrations of TMA of 1.1-11 mg/m3), providing good linearity, reproducibility and accuracy. The mean recovery of TMA was (96 +/- 7%) (n = 12), and the limit of detection was 0.05 microg. The proposed procedure allows the selective determination of TMA in the presence of other primary and secondary short-chain aliphatic amines.  相似文献   
44.
The manganese carbonyl complex [MnBr(CO)3 L ] ( 1 ), where L = Ph2POCH2CH2OPPh2, was prepared by reacting [MnBr(CO)5] with the bidentate ligand 1, 2‐Bis(diphenylphosphinite)ethane. From this compound and the appropriate phosphite, phosphinite or phosphonite ligands were synthesized the complexes [MnBr(CO)2 LL ′], where L ′ = P(OMe)3 ( 2 ) or P(OEt)3 ( 3 ) and [MnBr(CO)3 L ′2], where L ′ =PPh(OEt)2 ( 4 ) or PPh2(OEt) ( 5 ). The obtained compounds have been characterized by elemental analysis, mass spectrometry, IR and NMR (1H, 13C and 31P) spectroscopies and X‐ray diffractometry for the complexes 1 , 4 and 5 .  相似文献   
45.
Procedures were developed for determining cadmium, aluminium, and copper in beer and the products used in its manufacture by electrothermal atomic absorption spectrometry. Beer samples were injected into the furnace and solid samples were introduced as suspensions after preparation in a medium containing hydrogen peroxide, nitric acid, and ammonium dihydrogen phosphate for cadmium atomization. Calibration was performed with aqueous standards, and characteristic masses and detection limits were, respectively, 1 and 0.3 pg for cadmium, 18 and 5.4 pg for aluminium, and 5.6 and 6.8 pg for copper. Different samples of beer, wort, brewer's yeast, malt, raw grain, and hops were analyzed by the proposed procedures. Cadmium was found in low concentrations (0.001-0.08 microg/g and 0-1.3 ng/mL); copper (3-13 microg/g and 25-137 ng/mL) and aluminium (0.6-9 microg/g and 0.1-2 microg/mL) were found at higher levels. The reliability of the procedure was confirmed by comparing the results obtained with others based on microwave oven sample digestion, and by analyzing several certified reference materials.  相似文献   
46.
Titanium complexes with chelating alkoxide ligands [TiCp*(O(2)Bz)(OBzOH)] (1) and [TiCp*(Me)((OCH(2))(2)Py)] (2) were synthesised by reaction of [TiCp*Me(3)] (Cp*=eta(5)-C(5)Me(5)) with 2-hydroxybenzyl alcohol ((HO)(2)Bz) and 2,6-pyridinedimethanol ((HOCH(2))(2)Py), respectively. Complex 1 reacts with [(M(mu-OH)(cod))(2)] (M=Rh, Ir) to yield the early-late heterobimetallic complexes [TiCp*(O(2)Bz)(2)M(cod)] [M=Rh (3), Ir (4)]. Carbon monoxide readily replaces the COD ligand in 3 to give the rhodium dicarbonyl derivative [TiCp*(O(2)Bz)(2)Rh(CO)(2)] (5). Compound 2 reacts with [(M(mu-OH)(cod))(2)] (M=Rh, Ir) with protonolysis of a Tibond;Me bond to give [TiCp*((OCH(2))(2)Py)(mu-O)M(cod)] [M=Rh (6), Ir (7)]. The molecular structures of complexes 3, 5 and 7 were established by single-crystal X-ray diffraction studies.  相似文献   
47.
This paper discusses the spectrophotometric determination of cephalexin as the intact cephalexin or as its acid-induced degradation product. Cephalexin can be determined in the range 1 × 10–5–18 × 10–5 M with relative standard deviations of 5-1%. The limits of quantitation and detection were 10–5 and 0.3 × 10–5 M, respectively. These procedures were compared with reversed-phase HPLC determination. No interference was observed in the presence of common pharmaceutical adjuvants. The H-point standard additions method was applied in order to correct for the possible presence of the cephalexin precursor, 7-aminocephalosporanic acid; this improves the selectivity of the UV-vis spectrophotometric method.  相似文献   
48.
A new method using diluted reagents (nitric and hydrochloric acids and oxygen peroxide) and ultrasound energy to assist metals acid leaching with from edible seaweed was optimized. The method uses a first sonication at high temperature with hydrochloric acid as a previous stage to an ultrasound-assisted acid leaching with 7 ml of an acid solution containing nitric acid, hydrochloric acid and hydrogen peroxide at concentrations of 3.7, 3.0 and 3.0 M, respectively. Optimum conditions for the first sonication step were ultrasound energy at 17 kHz, sonication temperature at 65 °C, an acid volume of 2 ml, an hydrochloric acid concentration of 6.0 M and a sonication time of 10 min. It has been found that the first sonication stage at high temperature with hydrochloric acid is necessary to obtain quantitative recoveries for As, Ba, Fe and V. Otherwise quantitative recoveries were reached for the other elements investigated (Ca, K, Na, Mg, Cd, Cr, Cu, Mn, Ni, Pb and Zn). The repeatability of the ultrasound-assisted acid leaching method was around 10% for all elements. Adequate limit of detection and limit of quantification were reached by using inductively coupled plasma-optical emission spectrometry (ICP-OES) for measurements. The method resulted accurate after analysing several seaweed certified reference materials (IAEA-140/TM, NIES-03 and NIES-09). The method was finally applied to the multi-element determination in edible seaweed samples.  相似文献   
49.
The cohesion potential energy of the crystal of one enantiomer of ethyl 3-cyano-3-(3,4-dimethyloxyphenyl)-2,2,4-trimethylpentanoate, −47.7 ± 0.1 kJ mol−1 (0–90°C), was found out from the heat of sublimation (123.2 ± 5.1 kJ mol−1, 78.6°C) and the kinetic energies for the gas phase and the crystal. It was found that the entropy function of Debye’s theory of solids mathematically agreed with the vibrational entropy of the gas (variationally obtained), allowing to disclose the vibrational energy using the Debye energy function (E vib 835.0 kJ mol−1 (78.6°C), E 0 included). E kin for the crystal (771.1 kJ mol−1 (78.6°C)) was obtained by Debye’s theory with the experimental heat capacity. The cohesion energy represented a moderate part of the sublimation energy. The cohesion energy of the racemic crystal, −44.2 kJ mol−1, was obtained by the heat of formation of the crystal in the solid state (3.0 kJ mol−1, 83.3°C) and E kin for the crystal (by Debye’s theory). The decrease in cohesion on formation of the crystal accounted for the energy of formation. The change in potential energy on liquefaction of the racemate from the gas state was disclosed obtaining added-up E vib + rot for the liquid in the way as to E vib for the gas, the Debye entropy function being increasedly suited for the liquid (E vib + rot 763.4 kJ mol−1 (115.4°C)). Positive ΔE pot, 13.0 kJ mol−1, arised from the increase in electronic energy (Δ l νmean − 154.3 cm−1, by the dielectric nature of the liquid), added to the cohesion energy.  相似文献   
50.
Silica-supported trimetallic catalysts containing Pt, Sn and a group 13 metal (PtSnM, M=Ga, In, Tl) were prepared by consecutive impregnation steps from cis-[PtCl2(PPh3)2] and chloride precursors. X-ray diffraction (XRD), transmission electron microscopy (TEM), selected-area electron diffraction (ED) and energy dispersive X-ray analysis (EDX) showed large platelet-like particles of PtSn1−xMx phases. PtSnGa catalyst with a Pt/(Sn+Ga) molar ratio of 1.72 showed a bimodal particle distribution and a Pt phase was identified. Differences in surface structures were also revealed by the performance of catalysts in the dehydrogenation of n-hexane. For PtSnIn and PtSnTl (Pt/(Sn+M) molar ratio of about 1) the dehydrogenation was favoured. In contrast, PtSnGa catalyst yielded hydrogenolysis products. Photoelectron spectra showed the Pt 4f7/2 level at a binding energy of 70.0–71.8 eV in all cases. Moreover, the FT-IR spectra of chemisorbed CO on the PtSnGa showed a slight shift in the ν(CO) toward higher values with respect to the monometallic catalyst, pointing to an electronic effect in accordance with photoelectron spectroscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号