首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   3篇
化学   117篇
力学   4篇
数学   1篇
物理学   8篇
  2023年   3篇
  2022年   2篇
  2021年   8篇
  2020年   6篇
  2019年   5篇
  2016年   1篇
  2015年   5篇
  2014年   4篇
  2013年   6篇
  2012年   4篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
  2008年   5篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   3篇
  1973年   1篇
  1964年   1篇
  1957年   1篇
  1955年   1篇
  1948年   9篇
  1941年   1篇
  1937年   10篇
  1935年   4篇
  1934年   1篇
  1933年   2篇
  1932年   2篇
  1931年   5篇
  1930年   2篇
排序方式: 共有130条查询结果,搜索用时 15 毫秒
51.
52.
53.
Winkler's method of determining oxygen in water by titration of the iodine can not be applied with concentrations below 0.03 mg O2/litre. We studied the spectrophotometric determination of the iodine-starch complex described by bairstow, francis, and wyatt and succeeded in improving its stability by the addition of potassium sulphate. The intensity of the blue colour is very sensitive to variation of temperature. Below 10° C this influence can be neglected. Upwards from 30° C the intensity rapidly decreases. Instead of performing the determination at 10° C we plotted the extinction coefficient of dilute solutions as a function of the iodine concentration for temperatures ranging from 10 to 30° C. With “the aid of this graph the iodine concentration can be found when the extinction coefficient and the temperature of a solution are determined.With this method we can determine oxygen in water in concentrations ranging from 0.005 to 0.4 mg O2/litre. Duplicates (for water with a low content of oxygen) differ not more than 0.002 mg O2/litre.  相似文献   
54.
While the development of chiral molecules displaying circularly polarized luminescence (CPL) has received considerable attention, the corresponding CPL intensity, glum, hardly exceeds 10−2 at the molecular level owing to the difficulty in optimizing the key parameters governing such a luminescence process. To address this challenge, we report here the synthesis and chiroptical properties of a new family of π-helical push–pull systems based on carbo[6]helicene, where the latter acts as either a chiral electron acceptor or a donor unit. This comprehensive experimental and theoretical investigation shows that the magnitude and relative orientation of the electric (μe) and magnetic (μm) dipole transition moments can be tuned efficiently with regard to the molecular chiroptical properties, which results in high glum values, i.e. up to 3–4 × 10−2. Our investigations revealed that the optimized mutual orientation of the electric and magnetic dipoles in the excited state is a crucial parameter to achieve intense helicene-mediated exciton coupling, which is a major contributor to the obtained strong CPL. Finally, top-emission CP-OLEDs were fabricated through vapor deposition, which afforded a promising gEl of around 8 × 10−3. These results bring about further molecular design guidelines to reach high CPL intensity and offer new insights into the development of innovative CP-OLED architectures.

A CPL intensity of up to 3 × 10−2 is achieved in π-extended 6-helicene derivatives, owing to an intense helicene-mediated exciton coupling. Corresponding top-emission CP-OLEDs afforded a promising gEl of around 8 × 10−3.

The design of chiral emitters displaying intense circularly polarized luminescence (CPL) has attracted significant interest, thanks to the potential of CP light in a diverse range of applications going from chiroptoelectronics (organic light-emitting diodes (OLEDs), optical information processing, etc.) to bio-imaging and chiral sensing.1 Recently, designing OLEDs with CP electroluminescence (CP-OLEDs) has emerged as an interesting approach to improve high-resolution display performance. Namely, using unpolarised OLEDs, up to 50% of the emitted light can be lost due to the use of antiglare polarized filters.2 In CP-OLEDs, the electro-generated light can pass these filters with less attenuation owing to its circular polarization and thus lead to an increase of the image brightness with lower power consumption.3 To develop CP-OLED devices, the main approach relies on the doping of the device''s emitting layer by a CPL emitter, which should ensure simultaneously high exciton conversion and a high degree of circular polarization. The harvesting of both singlet and triplet excitons has been successfully addressed using either chiral phosphorescent materials or thermally activated delayed fluorescence (CP-TADF) emitters with device efficiencies of up to 32%.4 However, the intensity of circularly polarized electroluminescence (CPEL), evaluated by the corresponding dissymmetry factor gEl, remains inefficient and typically falls within the range of 10−3 with limited examples reaching gEl > 10−2 based on polymeric materials and lanthanide complexes.5 For CP-OLEDs using a molecular chiral emissive dopant, gEl, defined as the ratio between the intensity difference of left- and right-CPEL, and the total generated electroluminescence, 2(ElL − ElR)/(ElL + ElR), can be generally related to the luminescence dissymmetry factor glum measured in diluted solution.2 Accordingly, it is of crucial importance to design luminescent molecules with high glum values,3,28a–d,29 in order to reach strong CP electro-luminescence when going to practical devices. However, structural and electronic factors that govern the CPL of chiral compounds are still poorly understood even if a few studies have recently tried to rationalize and establish molecular guidelines to obtain high glum values.6Our team has contributed to the research in this area by developing extended π-helical molecular architectures resulting from the association of carbo[6]helicene and achiral dyes,7 which afforded enhanced chiroptical properties, with notably a glum up to 10−2, owing to an uncommon chiral exciton coupling process mediated by the chiral helicenic unit.8 In addition, we also described an unusual solvent effect on the intensity of CPL of π-helical push–pull helicene–naphthalimide derivatives,7b which showed a decrease of glum from 10−2 to 10−3 upon increasing the polarity of solvent.7b This solvatochromism effect was shown to be related to a symmetry breaking of the chiral excited state before emission,9 which modifies the relative intensity of the magnetic (μm) and electric (μe) dipole transition moments, and the angle, θ, between them (Fig. 1), ultimately impacting glum. The latter is well approximated as 4|m|cos θ/(|μ|) for an electric dipole-allowed transition.10Open in a separate windowFig. 1Chemical structures of “push–pull” 2,15-diethynylhexahelicene-based emitters with their polarized luminescence characteristics including their calculated electric and magnetic transition dipole moments and the angle between them corresponding to the S1 → S0 transition.While these results highlight interesting aspects regarding the key parameters influencing the CPL of organic emitters, this type of “helical push–pull design” remains limited to only one example, which render the systematic rationalization of these findings difficult. Accordingly, we decided to develop a complete family of new chiral push–pull compounds to explore the structural and electronic impact of the grafted substituents on the helical π-conjugated system. In addition, we went a step further and incorporated the designed chiral emitter into proof-of-concept CP-OLEDs using a top-emission architecture,11 which remains scarcely explored for CP-light generation despite its considerable potential for micro-display applications. To the best of our knowledge, only one example of such type of electroluminescent device has been reported, using a CP-TADF emitter, affording a modest gEl of 10−3.11aHerein, we report the synthesis and chiroptical properties of a new family of π-helical push–pull systems based on chiral carbo[6]helicene, functionalized by either electron donor or acceptor units. Interestingly, the chiral π-conjugated system of the helicene may act as either an electron acceptor or a donor, depending on the nature of the attached substituents, thereby impacting the chiroptical properties, notably the resulting CPL. By optimizing the chiral exciton coupling process through the modulation of the magnitude and relative orientation of the electric (μ) and magnetic (m) dipoles, the chiroptical properties of classical carbo[6]helicene-based emitters can be dramatically enhanced and reach high glum values at the molecular level, i.e. up to 3–4 × 10−2. Experimental and theoretical investigations revealed that the mutual orientation of the electric and magnetic dipoles in the excited-state is a crucial parameter and is optimal when the substituents attached to the helicene core possess a rather weak electron withdrawing or donating ability. Finally, proof of concept top-emission CP-OLEDs were fabricated through vapor deposition of π-helical push–pull derivatives and afforded a gEl of around 8 × 10−3, which represents a significant improvement for the polarization of electroluminescence emitted using this device architecture.  相似文献   
55.
This study reports the application of mass spectrometric methods to characterize unknown flavonoids of the herb Farsetia aegyptia Turra (Crucifereae). High-performance liquid chromatography was performed in combination with UV-photodiode array detection (LC/UV-DAD) and electrospray ionization mass spectrometry (LC/ESI-MS) in both positive and negative ion modes. Collision-induced dissociation (CID) mass spectral data were obtained off-line by nanospray (nano-ESI) analysis, which provided a wealth of information and led to the structural proposal of the flavonol di-O-glycosides present in the herb extract. In addition to the mass spectral data, we also report NMR data for the major compound which allowed the completion of its structural elucidation. The Farsetia aegyptia Turra herb extract was found to contain three flavonol di-O-glycosides containing a monosaccharidic residue linked to the 3-O position and a disaccharidic residue linked to the 7-O position; the major compound was characterized as the new flavonoid, isorhamnetin 3-O-alpha-L-arabinoside 7-O-[beta-D-glucosyl-1 --> 2]-alpha(L)rhamnoside. Different types of CID spectra, i.e., low-energy [M+H]+, [M+Na]+ and [M--H]- spectra as well as high-energy [M+Na]+ spectra, were evaluated with respect to their utility to locate the O-linked saccharidic residues in flavonol di-O-glycosides and to determine the sequence in the disaccharidic part. In agreement with previously published data, the 3-O-glycosyl residue was more readily lost from the protonated molecule than the 7-O-glycosyl residue. The opposite behavior was noted for the fragmentation of the deprotonated and sodiated molecules. Radical ions were observed in the high-energy [M+Na]+ CID spectra which provided supporting information on the glycosylation positions.  相似文献   
56.
The torsional region of the gas phase infrared spectrum of nitric acid and nitric acid-d1 has been reassigned, showing that besides a ground state torsional series also torsional series due to excited deformational states are present. Barriers to internal rotation have been calculated.  相似文献   
57.
A galabiose disaccharide building block was synthesized by an efficient pectinase cleavage of polygalacturonic acid and subsequent chemical functional group transformations. Besides the disaccharide, the corresponding trisaccharide was also obtained and modified. The compounds were subsequently conjugated to dendrimers with up to eight end groups using 'click' chemistry. The compounds were evaluated as inhibitors of adhesion of the pathogen Streptococcus suis in a hemagglutination assay and strong inhibition was observed for the tetra- and octavalent galabiose compound with MIC values in the low nanomolar range. The corresponding octavalent trisaccharide was a ca. 20-fold weaker inhibitor.  相似文献   
58.
59.
Owing to spectral variations from other sources than the component of interest, large investments in the NIR model development may be required to obtain satisfactory and robust prediction performance. To make the NIR model development for routine active pharmaceutical ingredient (API) prediction in tablets more cost-effective, alternative modelling strategies were proposed. They used a massive amount of prior spectral information on intra- and inter-batch variation and the pure component spectra to define a clutter, i.e., the detrimental spectral information. This was subsequently used for artificial data augmentation and/or orthogonal projections. The model performance improved statistically significantly, with a 34–40% reduction in RMSEP while needing fewer model latent variables, by applying the following procedure before PLS regression: (1) augmentation of the calibration spectra with the spectral shapes from the clutter, and (2) net analyte pre-processing (NAP). The improved prediction performance was not compromised when reducing the variability in the calibration set, making exhaustive calibration unnecessary. Strong water content variations in the tablets caused frequency shifts of the API absorption signals that could not be included in the clutter. Updating the model for this kind of variation demonstrated that the completeness of the clutter is critical for the performance of these models and that the model will only be more robust for spectral variation that is not co-linear with the one from the property of interest.  相似文献   
60.
Mono- and di-boranil-substituted helicenes were prepared by BF2-borylation of the corresponding anils, readily synthesized by condensation of 2-amino- and 2,15-diamino-helicenes with 4-(diethylamino)salicylaldehyde. After enantiomeric resolution using HPLC, their chiroptical properties including circularly polarized fluorescence in solution and in PMMA films were investigated and rationalized with the help of NMR, X-ray and quantum-chemical calculations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号