首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16659篇
  免费   341篇
  国内免费   58篇
化学   9616篇
晶体学   142篇
力学   563篇
数学   2599篇
物理学   4138篇
  2021年   166篇
  2020年   190篇
  2019年   188篇
  2018年   172篇
  2017年   142篇
  2016年   321篇
  2015年   286篇
  2014年   286篇
  2013年   795篇
  2012年   645篇
  2011年   773篇
  2010年   515篇
  2009年   430篇
  2008年   692篇
  2007年   621篇
  2006年   663篇
  2005年   587篇
  2004年   576篇
  2003年   464篇
  2002年   462篇
  2001年   351篇
  2000年   312篇
  1999年   234篇
  1998年   213篇
  1997年   209篇
  1996年   262篇
  1995年   230篇
  1994年   220篇
  1993年   262篇
  1992年   277篇
  1991年   258篇
  1990年   214篇
  1989年   184篇
  1988年   217篇
  1987年   249篇
  1986年   218篇
  1985年   278篇
  1984年   266篇
  1983年   225篇
  1982年   244篇
  1981年   247篇
  1980年   237篇
  1979年   242篇
  1978年   233篇
  1977年   229篇
  1976年   213篇
  1975年   209篇
  1974年   182篇
  1973年   177篇
  1972年   106篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
951.
Signal transduction in living systems is the conversion of information into a chemical change, and is the principal process by which cells communicate. In nature, these functions are encoded in non-equilibrium (bio)chemical reaction networks (CRNs) controlled by enzymes. However, man-made catalytically controlled networks are rare. We incorporated catalysis into an artificial fuel-driven out-of-equilibrium CRN, where the forward (ester formation) and backward (ester hydrolysis) reactions are controlled by varying the ratio of two organocatalysts: pyridine and imidazole. This catalytic regulation enables full control over ester yield and lifetime. This fuel-driven strategy was expanded to a responsive polymer system, where transient polymer conformation and aggregation are controlled through fuel and catalyst levels. Altogether, we show that organocatalysis can be used to control a man-made fuel-driven system and induce a change in a macromolecular superstructure, as in natural non-equilibrium systems.  相似文献   
952.
Journal of Radioanalytical and Nuclear Chemistry - The aim of this study was to find trace elements that increase risk of breast cancer based on the deviation of the concentration of trace elements...  相似文献   
953.
Determination of the ligand-binding affinity is an extremely interesting problem. Normally, the free energy perturbation (FEP) method provides an appropriate result. However, it is of great interest to improve the accuracy and precision of this method. In this context, temperature replica exchange molecular dynamics implementation of the FEP computational approach, which we call replica exchange free energy perturbation (REP) was proposed. In particular, during REP simulations, the system can easily escape from being trapped in local minima by exchanging configurations with high temperatures, resulting in significant improvement in the accuracy and precision of protein–ligand binding affinity calculations. The distribution of the decoupling free energy was enlarged, and its mean values were decreased. This results in changes in the magnitude of the calculated binding free energies as well as in alteration in the binding mechanism. Moreover, the REP correlation coefficient with respect to experiment ( RREP = 0.85 ± 0.15 ) is significantly boosted in comparison with the FEP one ( RFEP = 0.64 ± 0.30 ). Furthermore, the root-mean-square error (RMSE) of REP is also smaller than FEP, RMSEREP = 4.28 ± 0.69 versus RMSEFEP = 5.80 ± 1.11 kcal/mol, respectively. © 2019 Wiley Periodicals, Inc.  相似文献   
954.
Density functional theory and multiconfigurational CASPT2 and density matrix renormalization group DMRG-CASPT2 have been employed to study the low-lying states of NbGen−/0/+ (n = 1–3) clusters. With the DMRG-CASPT2 method, the active spaces are extended to a size of 20 orbitals. For most of the states, the CASPT2 relative energies are comparable with the DMRG-CASPT2 results. The leading configuration, bond distances, vibrational frequencies, and relative energies of the low-lying states of these clusters were calculated. The ground states of these clusters were computed to be 3Δ, 4Φ, and 5Φ of NbGe−/0/+; 3A2, 4B1, and 3B1 of cyclic-NbGe2−/0/+; and 1A′, 12A″ and 12A′′ (2E), and 3A″ of tetrahedral-NbGe3−/0/+ isomers. For NbGe cluster, our calculations proposed that the 6∑ is almost degenerate with the 4Φ with the CASPT2 and DMRG-CASPT2 relative energies of 0.05 and 0.06 eV. The adiabatic detachment energies of NbGen (n = 1–3) clusters were estimated to be 1.46, 1.55, and 2.18 eV by the CASPT2 method. The relevant detachment energies of the anionic ground state and the ionization energies of the neutral ground states are evaluated at the CASPT2 level.  相似文献   
955.
A nickel-catalyzed conjunctive cross-coupling of alkenyl carboxylic acids, aryl iodides, and aryl/alkenyl boronic esters is reported. The reaction delivers the desired 1,2-diarylated and 1,2-arylalkenylated products with excellent regiocontrol. To demonstrate the synthetic utility of the method, a representative product is prepared on gram scale and then diversified to eight 1,2,3-trifunctionalized building blocks using two-electron and one-electron logic. Using this method, three routes toward bioactive molecules are improved in terms of yield and/or step count. This method represents the first example of catalytic 1,2-diarylation of an alkene directed by a native carboxylate group.  相似文献   
956.
Photoresponsive materials that change in response to light have been studied for a range of applications. These materials are often metastable during irradiation, returning to their pre-irradiated state after removal of the light source. Herein, we report a polymer gel comprising poly(ethylene glycol) star polymers linked by Cu24L24 metal–organic cages/polyhedra (MOCs) with coumarin ligands. In the presence of UV light, a photosensitizer, and a hydrogen donor, this “polyMOC” material can be reversibly switched between CuII, CuI, and Cu0. The instability of the MOC junctions in the CuI and Cu0 states leads to network disassembly, forming CuI/Cu0 solutions, respectively, that are stable until re-oxidation to CuII and supramolecular gelation. This reversible disassembly of the polyMOC network can occur in the presence of a fixed covalent second network generated in situ by copper-catalyzed azide-alkyne cycloaddition (CuAAC), providing interpenetrating supramolecular and covalent networks.  相似文献   
957.
Improving product selectivity by controlling the spatial organization of functional sites at the nanoscale is a critical challenge in bifunctional catalysis. We present a series of composite bifunctional catalysts consisting of one-dimensional zeolites (ZSM-22 and mordenite) and a γ-alumina binder, with platinum particles controllably deposited either on the alumina binder or inside the zeolite crystals. The hydroisomerization of n-heptane demonstrates that the catalysts with platinum particles on the binder, which separates platinum and acid sites at the nanoscale, leads to a higher yield of desired isomers than catalysts with platinum particles inside the zeolite crystals. Platinum particles within the zeolite crystals impose pronounced diffusion limitations on reaction intermediates, which leads to secondary cracking reactions, especially for catalysts with narrow micropores or large zeolite crystals. These findings extend the understanding of the “intimacy criterion” for the rational design of bifunctional catalysts for the conversion of low-molecular-weight reactants.  相似文献   
958.
We present the discovery of a novel radical cation formed through one-electron oxidation of an N-heterocyclic carbene–carbodiimide (NHC–CDI) zwitterionic adduct. This compound possesses a distonic electronic structure (spatially separate spin and charge regions) and displays persistence under ambient conditions. We demonstrate its application in a redox-flow battery exhibiting minimal voltage hysteresis, a flat voltage plateau, high Coulombic efficiency, and no performance decay for at least 100 cycles. The chemical tunability of NHCs and CDIs suggests that this approach could provide a general entry to redox-active NHC–CDI adducts and their persistent radical ions for various applications.  相似文献   
959.
Recent experimental investigations demonstrated the generation of singlet oxygen during charging at high potentials in lithium/oxygen batteries. To contribute to the understanding of the underlying chemical reactions a key step in the mechanism of the charging process, namely, the dissociation of the intermediate lithium superoxide to oxygen and lithium, was investigated. Therefore, the corresponding dissociation paths of the molecular model system lithium superoxide (LiO2) were studied by CASSCF/CASPT2 calculations. The obtained results indicate the presence of different dissociation paths over crossing points of different electronic states, which lead either to the energetically preferred generation of triplet oxygen or the energetically higher lying formation of singlet oxygen. The dissociation to the corresponding superoxide anion is energetically less preferred. The understanding of the detailed reaction mechanism allows the design of strategies to avoid the formation of singlet oxygen and thus to potentially minimize the degradation of materials in alkali metal/oxygen batteries. The calculations demonstrate a qualitatively similar but energetically shifted behavior for the homologous alkali metals sodium and potassium and their superoxide species. Fundamental differences were found for the covalently bound hydroperoxyl radical.  相似文献   
960.
Asymmetric platinum donor–acceptor complexes [(pimp)Pt(Q2−)] are presented in this work, in which pimp=[(2,4,6-trimethylphenylimino)methyl]pyridine and Q2−=catecholate-type donor ligands. The properties of the complexes are evaluated as a function of the donor ligands, and correlations are drawn among electrochemical, optical, and theoretical data. Special focus has been put on the spectroelectrochemical investigation of the complexes featuring sulfonyl-substituted phenylendiamide ligands, which show redox-induced linkage isomerism upon oxidation. Time-dependent density functional theory (TD-DFT) as well as electron flux density analysis have been employed to rationalize the optical spectra of the complexes and their reactivity. Compound 1 ([(pimp)Pt(Q2−)] with Q2−=3,5-di-tert-butylcatecholate) was shown to be an efficient photosensitizer for molecular oxygen and was subsequently employed in photochemical cross-dehydrogenative coupling (CDC) reactions. The results thus display new avenues for donor–acceptor systems, including their role as photocatalysts for organic transformations, and the possibility to introduce redox-induced linkage isomerism in these compounds through the use of sulfonamide substituents on the donor ligands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号