首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   2篇
化学   49篇
力学   1篇
数学   22篇
物理学   11篇
  2024年   1篇
  2022年   3篇
  2021年   5篇
  2020年   4篇
  2019年   7篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   3篇
  2013年   5篇
  2012年   5篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   5篇
  2006年   1篇
  2005年   4篇
  2004年   5篇
  2003年   2篇
  1999年   2篇
  1996年   1篇
  1990年   1篇
  1981年   2篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
21.
22.
This paper represents the results of wave transformation in porous structures and hydraulic performance of a vertical porous seawall. The study was carried out using a VOF based two-phase numerical hydrodynamic model. The model was developed by coupling an ordinary porous flow model based on extended Navier–Stokes equations for porous media, and a two-phase flow model. A unique solution domain was established with proper treatment of the interface boundary between water, air and the structure. The VOF method with an improved fluid advection algorithm was used to trace the interface between water and air. The resistance to flow caused by the presence of structural material was modeled in terms of drag and inertia forces. The parameters that govern resistance to flow in a porous media were calibrated for a typical structural setup and then the computational efficacy of the model was evaluated for several wave and structural conditions other than the calibrated setup. A set of comparisons of wave properties in and around the structure showed that the model reproduced reasonably good agreement between computed results and measured data. The model was then applied to investigate wave transformation in a vertical porous structure. The role of porosity and width of a structure in reducing wave reflection and increasing energy dissipation was investigated. It is confirmed that there exists an optimum value of structure width and porosity that can maximize hydraulic performances of a porous seawall.  相似文献   
23.
In this paper, we study certain unique continuation properties for solutions of the semilinear heat equation tu−△u=g(u), with the homogeneous Dirichlet boundary condition, over Ω×(0,T). Ω is a bounded, convex open subset of Rd, with a smooth boundary for the subset. The function g:RR satisfies certain conditions. We establish some observation estimates for (uv), where u and v are two solutions to the above-mentioned equation. The observation is made over ω×{T}, where ω is any non-empty open subset of Ω, and T is a positive number such that both u and v exist on the interval [0,T]. At least two results can be derived from these estimates: (i) if ‖(uv)(⋅,T)L2(ω)=δ, then ‖(uv)(⋅,T)L2(Ω)?Cδα where constants C>0 and α∈(0,1) can be independent of u and v in certain cases; (ii) if two solutions of the above equation hold the same value over ω×{T}, then they coincide over Ω×[0,Tm). Tm indicates the maximum number such that these two solutions exist on [0,Tm).  相似文献   
24.
Inorganic Pode-Type Molecules The reaction of monosubstituated polyethylenglykoles [m = 0—4, R = Cl, OCH3, OAs(CH3)2, OSi(CH3)3] with amino compounds (CH3)xE[N(CH3)2]y(E = Si, x = y = 2; E = Si, x = 1, y = 3; E = P, x = 0, y = 3; E = As, y = 0, y = 3) results in the formation of pode-type molecules of the formula . The synthesis and rearrangement of these compounds by heating is described.  相似文献   
25.
The dense glycan shield is an essential feature of the SARS-CoV-2 spike (S) architecture, key to immune evasion and to the activation of the prefusion conformation. Recent studies indicate that the occupancy and structures of the SARS-CoV-2 S glycans depend not only on the nature of the host cell, but also on the structural stability of the trimer; a point that raises important questions about the relative competence of different glycoforms. Moreover, the functional role of the glycan shield in the SARS-CoV-2 pathogenesis suggests that the evolution of the sites of glycosylation is potentially intertwined with the evolution of the protein sequence to affect optimal activity. Our results from multi-microsecond molecular dynamics simulations indicate that the type of glycosylation at N234, N165 and N343 greatly affects the stability of the receptor binding domain (RBD) open conformation, and thus its exposure and accessibility. Furthermore, our results suggest that the loss of glycosylation at N370, a newly acquired modification in the SARS-CoV-2 S glycan shield''s topology, may have contributed to increase the SARS-CoV-2 infectivity as we find that N-glycosylation at N370 stabilizes the closed RBD conformation by binding a specific cleft on the RBD surface. We discuss how the absence of the N370 glycan in the SARS-CoV-2 S frees the RBD glycan binding cleft, which becomes available to bind cell-surface glycans, and potentially increases host cell surface localization.

The N-glycans structures affect the mechanistic properties of the SARS-CoV-2 S, fine-tuning the glycoprotein. The evolution of the glycan shield led to the loss of N370 glycosylation in SARS-CoV-2 S, where the RBD cleft can bind host-cell glycans.  相似文献   
26.
Atmospheric-pressure plasma processing techniques emerge as efficient and convenient tools to engineer a variety of nanomaterials for advanced applications in nanoscience and nanotechnology. This work presents different methods, including using a quasi-sinusoidal high-voltage generator, a radio-frequency power supply, and a uni-polar pulse generator, to generate atmospheric-pressure plasmas in the jet or dielectric barrier discharge configurations. The applicability of the atmospheric-pressure plasma is exemplified by the surface modification of nanoparticles for polymeric nanocomposites. Dielectric measurements reveal that representative nanocomposites with plasma modified nanoparticles exhibit notably higher dielectric breakdown strength and a significantly extended lifetime.  相似文献   
27.
28.
To realize the commercialization of sustainable materials, new polymers must be generated and systematically evaluated for material characteristics and end-of-life treatment. Polyester polyols made from renewable monomers have found limited adoption in thermoplastic polyurethane (TPU) applications, and their broad adoption in manufacturing may be possible with a more detailed understanding of their structure and properties. To this end, we prepared a series of bio-based crystalline and amorphous polyester polyols utilizing azelaic acid and varying branched or non-branched diols. The prepared polyols showed viscosities in the range of 504–781 cP at 70 °C, with resulting TPUs that displayed excellent thermal and mechanical properties. TPUs prepared from crystalline azelate polyester polyol exhibited excellent mechanical properties compared to TPUs prepared from amorphous polyols. These were used to demonstrate prototype products, such as watch bands and cup-shaped forms. Importantly, the prepared TPUs had up to 85% bio-carbon content. Studies such as these will be important for the development of renewable materials that display mechanical properties suitable for commercially viable, sustainable products.  相似文献   
29.
Phung M. Duc 《Optimization》2016,65(10):1855-1866
We propose splitting, parallel algorithms for solving strongly equilibrium problems over the intersection of a finite number of closed convex sets given as the fixed-point sets of nonexpansive mappings in real Hilbert spaces. The algorithm is a combination between the gradient method and the Mann-Krasnosel’skii iterative scheme, where the projection can be computed onto each set separately rather than onto their intersection. Strong convergence is proved. Some special cases involving bilevel equilibrium problems with inverse strongly monotone variational inequality, monotone equilibrium constraints and maximal monotone inclusions are discussed. An illustrative example involving a system of integral equations is presented.  相似文献   
30.
Post-translational modifications of proteins including phosphorylation, glycosylation, acetylation and ubiquitination facilitate the regulation of many cellular processes and intracellular signaling events. Ubiquitination plays a key role in the functional regulation and degradation of many classes of proteins, and the study of ubiquitination and poly-ubiquitination has emerged as one of the most active areas in proteomic research. A variety of mass spectrometric methods have been described for the identification of ubiquitination sites, the study of poly-ubiquitin topology and the identification of ubiquitin substrates. The most popular workflow for both ubiquitination site mapping and poly-ubiquitination chain topology characterization is to take advantage of the Gly-Gly signature on the substrate's lysine residue observed after tryptic digestion. Although a number of protocols have been described for the mapping of ubiquitination sites, one major challenge is that ubiquitination is typically heterogeneous, and several lysine residues may be ubiquitinated within a protein. When multiple ubiquitination sites are present, multiple analyses are often required to cover all of the potential modification sites which in turn can necessitate the usage of larger quantities of material. In addition, the level of ubiquitination on endogenous and recombinant proteins may be of low intensity, adding further analytical challenges in the identification of this modification. The use of the multiple reaction monitoring (MRM)-initiated detection and sequencing workflow (MIDAS) for the identification of phosphorylation sites has previously been described. Here, we explore the use of an MRM workflow for ubiquitination site mapping on the substrate protein, receptor interacting protein (RIP).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号