首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   1篇
化学   30篇
力学   2篇
数学   7篇
物理学   52篇
  2023年   2篇
  2020年   1篇
  2019年   2篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   9篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2004年   4篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  2000年   7篇
  1999年   3篇
  1998年   2篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1993年   5篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1932年   1篇
排序方式: 共有91条查询结果,搜索用时 31 毫秒
81.
82.
83.
Proper time synchronization   总被引:6,自引:0,他引:6  
A clock-transport method of synchronization employing proper time is described that yields in any given inertial system the same result as slow transport, but that imposes no limit on transport proper speed. It is argued that because the method involves only the empirically validated kinematic invariant proper time, on which all observers must agree, there exists an option to synchronize clocks in such a way that thesimultaneity of spatially separated events is agreed upon by all observers, hence is absolute. Such agreement refers only to phase equality of members (present at the events judged simultaneous) of comoving clock sets, not to clock rates or clock phase numerical values in different inertial systems. The demonstration employs only the on-worldline assertions of Einstein's kinematics. It thus depends on a limited subset of his ideas and allows a different identification of the spacelike invariant.  相似文献   
84.
We present an optically pumped ring cavity Cs vapor laser with output power of 80 mW operating in a single longitudinal mode at 894 nm and tunable over 14 GHz. This laser can be used for laser cooling, production of a spin polarized atoms, spectroscopy and quantum optics.  相似文献   
85.
We measured the momentum coupling coefficient Cm and laser-generated ion drift velocity and temperature in the femtosecond (fs) region, over a laser intensity range from ablation threshold to about one hundred times threshold. Targets were several pure metals and three organic compounds. The organic compounds were exothermic polymers specifically developed for the micro-laser plasma thruster, and two of these used “tuned absorbers” rather than carbon particles for laser absorption. The metals ranged from Li to W in atomic weight. We measured time of flight (TOF) profiles for ions. Specific impulse reached record values for this type of measurement and ablation efficiency was near 100%. These measurements extend the laser pulsewidth three orders of magnitude downward in pulsewidth relative to previous reports. Over this range, we found Cm to be essentially constant. Ion velocity ranged from 60 to 180 km/s.  相似文献   
86.
Fundamentals and applications of polymers designed for laser ablation   总被引:1,自引:0,他引:1  
The ablation characteristics of various polymers were studied at low and high fluences for an irradiation wavelength of 308 nm. The polymers can be divided into three groups, i.e. polymers containing triazene groups, designed ester groups, and reference polymers, such as polyimide. The polymers containing the photochemically most active group (triazene) exhibit the lowest thresholds of ablation (as low as 25 mJ cm-2) and the highest etch rates (e.g. 250 nm/pulse at 100 mJ cm-2), followed by the designed polyesters and then polyimide. Neither the linear nor the effective absorption coefficients have a clear influence on the ablation characteristics. The different behavior of polyimide might be explained by a pronounced thermal part in the ablation mechanism. The laser-induced decomposition of the designed polymers was studied by nanosecond interferometry and shadowgraphy. The etching of the triazene polymer starts and ends with the laser pulse, indicating photochemical ablation. Shadowgraphy reveals mainly gaseous products and a pronounced shockwave in air. The designed polymers were tested for an application as the polymer fuel in laser plasma thrusters. Received: 21 October 2002 / Accepted: 20 January 2003 / Published online: 28 May 2003 RID="*" ID="*"Corresponding author. Fax: +41-56/3104-412, E-mail: thomas.lippert@psi.ch  相似文献   
87.
88.
89.
UV-Laser ablation of polymers is a well-established method to structure and deposit polymers, but the mechanisms of ablation are still controversial, i.e. photothermal or photochemical processes. An approach to probe the ablation mechanisms and to improve ablation is to incorporate photoactive groups into the polymer structure.The investigation of the ablation behavior of designed triazene polymers showed that the ablation mechanism is always a combination of both photothermal and photochemical processes, but the ratio can be changed by using different polymers and irradiation wavelengths. Also the quality of structures in the triazene polymers is superior at an irradiation wavelength of 308 nm compared to commercially available polymers.Polymers can be designed not only for UV irradiation, but also for applications in the IR range, but with different requirements. One application for designed polymers in the near-IR range is as fuel for the laser plasma thruster, which is used as propulsion system for small satellites. With commercially available polymers the necessary thrust could not be achieved. A specially designed polymer-absorber system for this application produce more energy in the form of thrust, than the laser delivered.  相似文献   
90.
The micro-laser plasma thruster (μ-LPT) is a micropropulsion device, designed for steering and propelling of small satellites (1-10 kg). A laser is focused onto a polymer layer on a substrate to form a plasma, which produces the thrust that is used to control the satellite motion. Three different polymers were tested to understand the influence of their specific properties on the thrust performance: poly(vinyl chloride) (PVC) as a low-energetic material, a glycidyl azide polymer (GAP), and poly(vinyl nitrate) (PVN) as high-energetic polymers. Different absorbers (carbon nanoparticles or an IR dye) were added to the polymer to achieve absorption at the irradiation wavelength (1064 nm). The influence of the material and dopant properties on the decomposition characteristics and the energy release were investigated by thrust measurements and ns-shadowgraphy. Mass spectrometry and time- and space-resolved plasma emission spectroscopy in air and vacuum were used to analyze the degree of fragmentation as function of the material properties. The kinetic energies of selected fragments were calculated from the spectra. GAP + C showed the best performance in all measurements at high fluences, while at low fluences PVN + C revealed the best performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号