首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4981篇
  免费   60篇
  国内免费   27篇
化学   3143篇
晶体学   54篇
力学   216篇
数学   808篇
物理学   847篇
  2023年   24篇
  2022年   78篇
  2021年   91篇
  2020年   87篇
  2019年   113篇
  2018年   64篇
  2017年   61篇
  2016年   139篇
  2015年   124篇
  2014年   160篇
  2013年   266篇
  2012年   329篇
  2011年   392篇
  2010年   208篇
  2009年   223篇
  2008年   275篇
  2007年   284篇
  2006年   300篇
  2005年   286篇
  2004年   230篇
  2003年   223篇
  2002年   212篇
  2001年   78篇
  2000年   74篇
  1999年   54篇
  1998年   64篇
  1997年   66篇
  1996年   63篇
  1995年   47篇
  1994年   52篇
  1993年   35篇
  1992年   27篇
  1991年   24篇
  1990年   22篇
  1989年   17篇
  1988年   22篇
  1987年   16篇
  1986年   12篇
  1985年   26篇
  1984年   19篇
  1983年   12篇
  1982年   14篇
  1981年   12篇
  1980年   18篇
  1979年   22篇
  1978年   17篇
  1977年   11篇
  1976年   14篇
  1975年   11篇
  1974年   9篇
排序方式: 共有5068条查询结果,搜索用时 15 毫秒
161.
The effect of partial substitution of molybdenum by phosphorus on the global and local structural arrangement of the fast oxide-ion conductor La(2)Mo(2)O(9) (LAMOX) has been studied by X-ray powder diffraction as well as (139)La and (31)P solid state NMR. The diffraction patterns show that La(2)Mo(2-y)P(y)O(9-y/2) forms a solid solution at low phosphorus concentrations, and that there is a structural phase transition upon increasing phosphorus concentration. This phase transition is also reflected in (139)La and (31)P NMR spectra. The possibility to excite (31)P multiple-quantum coherences of one of the (31)P NMR signals gives evidence of an accumulation of phosphorus atoms on neighbouring Mo-type sites already before formation of three-dimensional precipitates. On the basis of our X-ray and NMR results we propose a possible structural arrangement of the compound La(2)Mo(2-y)P(y)O(9-y/2) that explains the experimental observations by crystal twinning.  相似文献   
162.
The determination of the nature and structure of surface sites after chemical modification of large surface area oxides such as silica is a key point for many applications and challenging from a spectroscopic point of view. This has been, for instance, a long-standing problem for silica reacted with alkylaluminum compounds, a system typically studied as a model for a supported methylaluminoxane and aluminum cocatalyst. While (27)Al solid-state NMR spectroscopy would be a method of choice, it has been difficult to apply this technique because of large quadrupolar broadenings. Here, from a combined use of the highest stable field NMR instruments (17.6, 20.0, and 23.5 T) and ultrafast magic angle spinning (>60 kHz), high-quality spectra were obtained, allowing isotropic chemical shifts, quadrupolar couplings, and asymmetric parameters to be extracted. Combined with first-principles calculations, these NMR signatures were then assigned to actual structures of surface aluminum sites. For silica (here SBA-15) reacted with triethylaluminum, the surface sites are in fact mainly dinuclear Al species, grafted on the silica surface via either two terminal or two bridging siloxy ligands. Tetrahedral sites, resulting from the incorporation of Al inside the silica matrix, are also seen as minor species. No evidence for putative tri-coordinated Al atoms has been found.  相似文献   
163.
A series of linearly arranged donor-spacer-acceptor (D-S-A) systems 1-3, has been prepared and characterized. These dyads combine an Os(II)bis(terpyridine) unit as the photoactivable electron donor (D), a biphenylene (2) or phenylene-xylylene (3) fragment as the spacer (S), and a N-aryl-2,6-diphenylpyridinium electrophore (with aryl = 4-pyridyl or 4-pyridylium in 1 or 2/3, respectively) as the acceptor (A). Their absorption spectra, redox behavior, and luminescence properties (both at 77 K in rigid matrix and at 298 K in fluid solution) have been studied. The electronic structure and spectroscopic properties of a representative compound of the series (i.e., 2) have also been investigated at the theoretical level, performing Density Functional Theory (DFT)-based calculations. Time-dependent transient absorption spectra of 1-3 have also been recorded at room temperature. The results indicate that efficient photoinduced oxidative electron transfer takes place in the D-S-A systems at room temperature in fluid solution, for which rate constants (in the range 4 × 10(8)-2 × 10(10) s(-1)) depend on the driving force of the process and the spacer nature. In all the D-S-A systems, charge recombination is faster than photoinduced charge separation, in spite of the relatively large energy of the D(+)-S-A(-) charge-separated states (between 1.47 and 1.78 eV for the various species), which would suggest that the charge recombination occurs in the Marcus inverted region. Considerations based on superexchange mechanism suggest that the reason for the fast charge recombination is the presence of a virtual D-S(+)-A(-) state at low energy--because of the involvement of the easily oxidizable biphenylene spacer--which is beneficial for charge recombination via superexchange but unsuitable for photoinduced charge separation. To further support the above statement, we prepared a fourth D-S-A species, 4, analogous to 2 but with a (hardly oxidizable) single phenylene fragment serving as the spacer. For such a species, charge recombination (about 3 × 10(10) s(-1)) is slower than photoinduced charge separation (about 1 × 10(11) s(-1)), thereby confirming our suggestions.  相似文献   
164.
165.
A supported, single-site Lewis acid, ≡SiOB(C(6)F(5))(2), was prepared by water-catalyzed grafting of B(C(6)F(5))(3) onto the surface of amorphous silica, and its subsequent use as a cocatalyst for heterogeneous olefin polymerization was explored. Although B(C(6)F(5))(3) has been reported to be unreactive toward silica in the absence of a Br?nsted base, we find that it can be grafted even at room temperature, albeit slowly. The mechanism was investigated by (1)H and (19)F NMR, in both the solution and solid states. In the presence of a trace amount of H(2)O, either added intentionally or formed in situ by borane-induced dehydration of silanol pairs, the adduct (C(6)F(5))(3)B·OH(2) hydrolyzes to afford C(6)F(5)H and (C(6)F(5))(2)BOH. The latter reacts with the surface hydroxyl groups of silica to yield ≡SiOB(C(6)F(5))(2) sites and regenerate H(2)O. When B(C(6)F(5))(3) is present in excess, the resulting grafted boranes appear to be completely dry, due to the eventual formation of [(C(6)F(5))(2)B](2)O. The immobilized, tri-coordinate Lewis acid sites were characterized by solid-state (11)B and (19)F NMR, IR, elemental analysis, and C(5)H(5)N-TPD. Their ability to activate two molecular C(2)H(4) polymerization catalysts, Cp(2)ZrMe(2) and an (α-iminocarboxamidato)nickel(II) complex, was explored.  相似文献   
166.
Contrary to 4,4'-dipyridinium (i.e., archetypal methyl viologen), which is reduced by two single-electron transfers (stepwise reduction), the 4,1'-dipyridinium isomer (so-called "head-to-tail" isomer) undergoes two electron transfers at apparently the same potential (single-step reduction). A combined theoretical and experimental study has been undertaken to establish that the latter electrochemical behavior, also observed for other polyarylpyridinium electrophores, is due to potential compression originating in a large structural rearrangement. Three series of branched expanded pyridiniums (EPs) were prepared: N-aryl-2,4,6-triphenylpyridiniums (Ar-TP), N-aryl-2,3,4,5,6-pentaphenylpyridiniums (Ar-XP), and N-aryl-3,5-dimethyl-2,4,6-triphenylpyridinium (Ar-DMTP). The intramolecular steric strain was tuned via N-pyridinio aryl group (Ar) phenyl (Ph), 4-pyridyl (Py), and 4-pyridylium (qPy) and their bulky 3,5-dimethyl counterparts, xylyl (Xy), lutidyl (Lu), and lutidylium (qLu), respectively. Ferrocenyl subunits as internal redox references were covalently appended to representative electrophores in order to count the electrons involved in EP-centered reduction processes. Depending on the steric constraint around the N-pyridinio site, the two-electron reduction is single-step (Ar = Ph, Py, qPy) or stepwise (Ar = Xy, Lu, qLu). This steric switching of the potential compression is accurately accounted for by ab initio modeling (Density Functional Theory, DFT) that proposes a mechanism for pyramidalization of the N(pyridinio) atom coupled with reduction. When the hybridization change of this atom is hindered (Ar = Xy, Lu, qLu), the first reduction is a one-electron process. Theory also reveals that the single-step two-electron reduction involves couples of redox isomers (electromers) displaying both the axial geometry of native EPs and the pyramidalized geometry of doubly reduced EPs. This picture is confirmed by a combined UV-vis-NIR spectroelectrochemical and time-dependent DFT study: comparison of in situ spectroelectrochemical data with the calculated electronic transitions makes it possible to both evidence the distortion and identify the predicted electromers, which play decisive roles in the electron-transfer mechanism. Last, this mechanism is further supported by in-depth analysis of the electronic structures of electrophores in their various reduction states (including electromeric forms).  相似文献   
167.
    
Differential geometry provides a useful mathematical framework for describing the fundamental concepts in crystallography. The notions of point and associated vector spaces correspond to those of manifold and tangent space at a given point. A space‐group operation is a one‐to‐one map acting on the manifold, whereas a point‐group operation is a linear map acting between two tangent spaces of the manifold. Manifold theory proves particularly powerful as a unified formalism describing symmetry operations of conventional as well as modulated crystals without requiring a higher‐dimensional space. We show, in particular, that a modulated structure recovers a three‐dimensional periodicity in any tangent space and that its point group consists of linear applications.  相似文献   
168.
    
A Raman microspectrophotometer is described that allows the spectroscopic investigation of protein crystals under exactly the same conditions as those used for X‐ray data collection. The concept is based on the integration of the Raman excitation/collection optics into a microspectrophotometer built around a single‐axis diffractometer and a cooling device. It is shown that Raman spectra of outstanding quality can be recorded from crystallized macromolecules under non‐resonant conditions. It is proposed that equipment developed in the context of macromolecular cryocrystallography, such as commonly used cryoloops, can be advantageously used to improve the quality of Raman spectra. In a few examples, it is shown that Raman microspectrophotometry provides crucial complementary information to X‐ray crystallography, e.g. identifying the chemical nature of unknown features discovered in electron‐density maps, or following ligand‐binding kinetics in biological crystals. The feasibility of `online' Raman measurements performed directly on the ESRF macromolecular crystallography beamlines has been investigated and constitutes a promising perspective for the routine implementation of combined spectroscopic and crystallographic methods. In crystallo Raman spectroscopy efficiently complements absorption/fluorescence microspectrophotometry for the study of biological crystals and opens up new avenues for difficult structural projects with mechanistic perspectives in the field of protein crystallography.  相似文献   
169.
    
The systematic presence of the ternary phases U6Mo4Al43 and UMo2Al20 is reported in a U–Mo/Al interaction layer grown by thermal annealing. This work shows, therefore, the low Mo solubility in UAl3 and UAl4 binary phases; it contradicts the hypothesis of the formation of (U,Mo)Al3 and (U,Mo)Al4 solid solutions often admitted in the literature. Using µ‐XAS (micro X‐ray absorption spectroscopy) at the Mo K edge and µ‐XRD (micro X‐ray diffraction), the heterogeneity of the interaction layer obtained on a γ‐U0.85Mo0.15/Al diffusion couple has been precisely investigated. The UMo2Al20 phase has been identified at the closest location from the Al side. Moreover, µ‐XRD mapping performed on an annealed fuel plate enabled the characterization of the four phases resulting from the γ‐U0.85Mo0.15/Al and (U2Mo + α‐U)/Al interactions. A strong correlation between the concentrations of UAl4 and UMo2Al20 and those of UAl3 and U6Mo4Al43 has been shown.  相似文献   
170.
    
A comparative study of the bi‐linear and bi‐quadratic quadrilateral elements and the quadratic triangular element for solving incompressible viscous flows is presented. These elements make use of the stabilized finite element formulation of the Galerkin/least‐squares method to simulate the flows, with the pressure and velocity fields interpolated with equal orders. The tangent matrices are explicitly derived and the Newton–Raphson algorithm is employed to solve the resulting nonlinear equations. The numerical solutions of the classical lid‐driven cavity flow problem are obtained for Reynolds numbers between 1000 and 20 000 and the accuracy and converging rate of the different elements are compared. The influence on the numerical solution of the least square of incompressible condition is also studied. The numerical example shows that the quadratic triangular element exhibits a better compromise between accuracy and converging rate than the other two elements. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号