首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1761篇
  免费   46篇
  国内免费   21篇
化学   1049篇
晶体学   8篇
力学   76篇
数学   423篇
物理学   272篇
  2024年   10篇
  2023年   18篇
  2022年   50篇
  2021年   71篇
  2020年   96篇
  2019年   133篇
  2018年   61篇
  2017年   53篇
  2016年   81篇
  2015年   40篇
  2014年   63篇
  2013年   118篇
  2012年   94篇
  2011年   87篇
  2010年   71篇
  2009年   54篇
  2008年   84篇
  2007年   76篇
  2006年   50篇
  2005年   55篇
  2004年   41篇
  2003年   34篇
  2002年   32篇
  2001年   10篇
  2000年   15篇
  1999年   17篇
  1998年   17篇
  1997年   14篇
  1996年   16篇
  1995年   18篇
  1994年   15篇
  1993年   9篇
  1992年   7篇
  1991年   10篇
  1990年   8篇
  1989年   8篇
  1988年   8篇
  1987年   9篇
  1985年   23篇
  1984年   11篇
  1983年   9篇
  1982年   16篇
  1981年   19篇
  1980年   13篇
  1979年   12篇
  1978年   10篇
  1977年   13篇
  1976年   10篇
  1975年   11篇
  1972年   6篇
排序方式: 共有1828条查询结果,搜索用时 15 毫秒
961.
Gold-coated magnetic nanoparticles were synthesized with size ranging from 15 to 40 nm using sodium citrates as the reducing agent. Oxidized magnetites (Fe3O4) fabricated by co-precipitation of Fe2+ and Fe3+ in strong alkaline solution were used as magnetic cores. The structures of gold (Au) shell and magnetic core (Au–Fe) were studied by transmission electron microscopy (TEM) image and energy dispersive spectroscopy (EDS) spectrum. Results from high-resolution X-ray diffraction (HR XRD) show that the Au–Fe oxide nanoparticles have a face-centered cubic shape with the crystalline faces of {1 1 1}. The Au-coated magnetic nanoparticles exhibited a surface plasmon resonance peak at 528 nm. The nanoparticles are well dispersed in distilled water. A 3000 G permanent magnet was successfully used for the separation of the functionalized nanoparticles. Magnetic properties of the nanoparticles were determined by magnetic force microscope (MFM) in nanometric resolution and vibrating sample magnetometer (VSM). Magnetic separation of biological molecules using Au-coated magnetic oxide composite nanoparticles was examined after attachment of protein immunoglobulin G (IgG) through electrostatic interactions. Using this method, separation was achieved with a maximum yield of 35% at an IgG concentration of 400 ng/ml.  相似文献   
962.
Neural network is important for a wide range of applications. Especially, a small neural network can display various complex behaviors. In this work, the investigations of a Hopfield neural network and its field programmable gate array (FPGA) implementation have been reported. The considered Hopfield neural network is simple because it includes only three neurons. It is interesting that we observed chaos and numerous coexisting attractors in such a network. In addition, the network has been implemented via an FPGA platform to verify its feasibility.  相似文献   
963.
The Pr1−xPbxMnO3 (x=0.1–0.5) perovskites have been fabricated by solid-state reaction. The X-ray diffraction patterns show that the samples are of single phase with orthorhombic structure. The field-cooled (FC) and zero-field-cooled (ZFC) thermomagnetic curves measured at low field and low temperatures exhibit the spin glass-like state. The Curie temperature of samples increased with increase in Pb content. The maximum magnetic entropy change |ΔSm|max reaches the giant values of 3.91 and 3.68 J/kg K for quite low magnetic field change of 1.35 T for the samples x=0.1 and 0.4, respectively. The resistance measurements show that there is insulator–metal phase transition on the R(T) curves for samples with x?0.3. The giant magnetoresistance effect is also observed for all samples studied.  相似文献   
964.
965.
966.
Two 2D J-modulated HSQC-based experiments were designed for precise determination of small residual dipolar one-bond carbon-proton coupling constants in (13)C natural abundance carbohydrates. Crucial to the precision of a few hundredths of Hz achieved by these methods was the use of long modulation intervals and BIRD pulses, which acted as semiselective inversion pulses. The BIRD pulses eliminated effective evolution of all but (1)J(CH) couplings, resulting in signal modulation that can be described by simple modulation functions. A thorough analysis of such modulation functions for a typical four-spin carbohydrate spin system was performed for both experiments. The results showed that the evolution of the (1)H-(1)H and long-range (1)H-(13)C couplings during the BIRD pulses did not necessitate the introduction of more complicated modulation functions. The effects of pulse imperfections were also inspected. While weakly coupled spin systems can be analyzed by simple fitting of cross peak intensities, in strongly coupled spin systems the evolution of the density matrix needs to be considered in order to analyse data accurately. However, if strong coupling effects are modest the errors in coupling constants determined by the "weak coupling" analysis are of similar magnitudes in oriented and isotropic samples and are partially cancelled during dipolar coupling calculation. Simple criteria have been established as to when the strong coupling treatment needs to be invoked.  相似文献   
967.
Quantum surface effects (new emission bands, blueshifts, intensity enhancement) were observed in SPAN-80 activated ZnS nanocolloids and explained in terms of time-dependent density functional theory. The experimental evidences were demonstrated for both undoped and Cu, Mn-doped colloidal phases. The photoluminescence spectra of these materials showed a new green band at 520 nm (ZnS:Cu) and a yellow-orange band at 576 nm (ZnS:Mn) besides a blue band at 465 nm. All bands lie in the visible region and are blueshifted, show sharp emissions with narrow widths and have approximately 20-times stronger intensities in comparison with those of the bulk samples. The time-resolved luminescence spectra showed that the life-times of free electrons were 0.12 μs and 1.9 ms in ZnS:Cu and ZnS:Mn correspondingly.  相似文献   
968.
969.
The technological settings of a modified sol-gel method for the preparation of highly fine homogeneous powder of Ca2CuO3 doped with uranium 238 (x= 0.0–0.05) is presented. The analysis of structure, purity of phases and the justification for the role of uranium in the given compounds are provided, together with an almost complete classification of the observed optical phonons by means of Raman, IR measurements and ab initio calculations. A significant reduction in particle size was achieved by doping, and a strong correlation between resistivity and doping concentration was observed and explained using the phonon-assisted electron hopping conduction model. The persistence of a covalent insulation state in all compounds is an interesting feature of this doping.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号