首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1623篇
  免费   66篇
  国内免费   4篇
化学   1380篇
晶体学   6篇
力学   14篇
数学   119篇
物理学   174篇
  2023年   21篇
  2022年   30篇
  2021年   41篇
  2020年   40篇
  2019年   28篇
  2018年   29篇
  2017年   27篇
  2016年   54篇
  2015年   61篇
  2014年   71篇
  2013年   95篇
  2012年   108篇
  2011年   108篇
  2010年   63篇
  2009年   59篇
  2008年   99篇
  2007年   101篇
  2006年   89篇
  2005年   81篇
  2004年   59篇
  2003年   50篇
  2002年   64篇
  2001年   21篇
  2000年   31篇
  1999年   22篇
  1998年   19篇
  1997年   10篇
  1996年   9篇
  1995年   19篇
  1994年   8篇
  1993年   12篇
  1992年   12篇
  1991年   12篇
  1990年   11篇
  1989年   11篇
  1988年   8篇
  1987年   9篇
  1986年   9篇
  1985年   14篇
  1984年   11篇
  1983年   11篇
  1982年   5篇
  1981年   8篇
  1980年   5篇
  1979年   6篇
  1978年   3篇
  1977年   4篇
  1973年   3篇
  1971年   5篇
  1965年   6篇
排序方式: 共有1693条查询结果,搜索用时 15 毫秒
121.
122.
123.
124.
125.
Preparation method of polyaniline/montmorillonite (PANI/MMT) nanocomposite in the form of thin layer deposited on various substrates is optimized in this work to obtain high electrical conductivity. Simple method (i.e. polymerization of anilinium sulfate in the presence of MMT) has been used for the preparation and following four conditions were varied: preparation temperature (T = 10 or 20 °C), preparation time (t = 4 or 6 h), size fraction of MMT (p < 1 or 5 µm), and type of substrate (microscope glass slides, silica glass slides, polyester foils). Therefore, 24 samples were prepared, characterized and their electrical conductivity was compared. Raman spectroscopy and scanning electron microscopy were used for the characterization of the structure of samples. Thickness of layers was measured using atomic force microscopy. Based on the comparison of samples and with respect to the aim of obtaining high electrical conductivity, it was found that the most suitable substrate is polyester foil and preparation conditions are T = 20 °C, t = 6 h, p < 5 µm. To obtain highly conductive layers on glass substrates (although less conductive than layers on foil), preparation time have to be shortened to 4 h.  相似文献   
126.
The antimicrobial activity of 16 newly prepared quinolizidines derivatives using bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Proteus sp., Escherichia coli) acid fast bacterium Mycobacterium smegmatis, yeasts (Candida albicans, Candida parapsilosis), and filamentous fungi (Fusarium culmorum, Microsporum gypseum, Aspergillus flavus, Botrytis cinerea, Alternaria alternata) was studied in this paper. The best antibacterial properties were demonstrated by derivatives 11Ba, trans10Bb and 11Bb, and the most sensitive microorganism was found to be the gram-positive bacterium S. epidermidis. The derivative 11Bb showed the best antifungal activity, while C. albicans was resistant to all tested derivatives, and C. parapsilosis was fully inhibited in the presence of the derivative 11Ba and 11Bb. Among the filamentous fungi, only the dermatophyte M. gypseum was partially inhibited. Biofilms represent the most prevalent type of microbial growth in nature and are crucial to the development of clinical infections. Newly synthesized derivatives were also added into the medium throughout the biofilm formation. We have observed a significant decrease of biofilm formation in the presence of quinolizidine derivatives, testifying to their significant antimicrobial activity. It seems that the relationship between antimicrobial activity and the structure is based on the alkaline character due to nitrogen, the saturated basic quinolizidine skeleton, and the position of sulfur in the molecule.  相似文献   
127.
A large series of ionic liquids (ILs) based on the weakly coordinating alkoxyaluminate [Al(hfip)(4)](-) (hfip: hexafluoroisopropoxy) with classical as well as functionalized cations were prepared, and their principal physical properties determined. Melting points are between 0 ([C(4)MMIM][Al(hfip)(4)]) and 69 °C ([C(3)MPip][Al(hfip)(4)]); three qualify as room-temperature ILs (RTILs). Crystal structures for six ILs were determined; their structural parameters and anion-cation contacts are compared here with known ILs, with a special focus on their influence on physical properties. Moreover, the biodegradability of the compounds was investigated by using the closed-bottle and the manometric respirometry test. Temperature-dependent viscosities and conductivities were measured between 0 and 80 °C, and described by either the Vogel-Fulcher-Tammann (VFT) or the Arrhenius equations. Moreover, conductivities and viscosities were investigated in the context of the molecular volume, V(m). Physical property-V(m) correlations were carried out for various temperatures, and the temperature dependence of the molecular volume was analyzed by using crystal structure data and DFT calculations. The IL ionicity was investigated by Walden plots; according to this analysis, [Al(hfip)(4)](-) ILs may be classified as "very good to good ILs"; while [C(2)MIM][Al(hfip)(4)] is a better IL than [C(2)MIM][NTf(2)]. The dielectric constants of ten [Al(hfip)(4)](-) ILs were determined, and are unexpectedly high (ε(r)=11.5 to 16.8). This could be rationalized by considering additional calculated dipole moments of the structures frozen in the solid state by DFT. The determination of hydrogen gas solubility in [Al(hfip)(4)](-) RTILs by high-pressure NMR spectroscopy revealed very high hydrogen solubilities at 25 °C and 1 atm. These results indicate the significant potential of this class of ILs in manifold applications.  相似文献   
128.
The synthesis of a unique series of heteromultinuclear transition metal compounds is reported. Complexes 1‐I‐3‐Br‐5‐(FcC≡C)‐C6H3 ( 4 ), 1‐Br‐3‐(bpy‐C≡C)‐5‐(FcC≡C)‐C6H3 ( 6 ), 1,3‐(bpy‐C≡C)2‐5‐(FcC≡C)‐C6H3 ( 7 ), 1‐(XC≡C)‐3‐(bpy‐C≡C)‐5‐(FcC≡C)‐C6H3 ( 8 , X = SiMe3; 9 , X = H), 1‐(HC≡C)‐3‐[(CO)3ClRe(bpy‐C≡C)]‐5‐(FcC≡C)‐C6H3 ( 11 ), 1‐[(Ph3P)AuC≡C]‐3‐[(CO)3ClRe(bpy‐C≡C)]‐5‐(FcC≡C)‐C6H3 ( 13 ), 1‐[(Ph3P)AuC≡C]‐3‐(bpy‐C≡C)‐5‐(FcC≡C)‐C6H3 ( 14 ), [1‐[(Ph3PAuC≡C]‐3‐[{[Ti](C≡CSiMe3)2}Cu(bpy‐C≡C)]‐5‐(FcC≡C)‐C6H3]PF6 ( 16 ), and [1,3‐[(tBu2bpy)2Ru(bpy‐C≡C)]2‐5‐(FcC≡C)‐C6H3](PF6)4 ( 18 ) (Fc = (η5‐C5H4)(η5‐C5H5)Fe, bpy = 2,2′‐bipyridiyl‐5‐yl, [Ti] = (η5‐C5H4SiMe3)2Ti) were prepared by using consecutive synthesis methodologies including metathesis, desilylation, dehydrohalogenation, and carbon–carbon cross‐coupling reactions. In these complexes the corresponding metal atoms are connected by carbon‐rich bridging units comprising 1,3‐diethynyl‐, 1,3,5‐triethynylbenzene and bipyridyl units. They were characterized by elemental analysis, IR and NMR spectroscopy, and partly by ESI‐TOF mass spectrometry., The structures of 4 and 11 in the solid state are reported. Both molecules are characterized by the central benzene core bridging the individual transition metal complex fragments. The corresponding acetylide entities are, as typical, found in a linear arrangement with representative M–C, C–CC≡C and C≡C bond lengths.  相似文献   
129.
We explored melt infiltration of mesoporous silica supports to prepare supported metal catalysts with high loadings and controllable particle sizes. Melting of Co(NO(3))(2)·6H(2)O in the presence of silica supports was studied in situ with differential scanning calorimetry. The melting point depression of the intraporous phase was used to quantify the degree of pore loading after infiltration. Maximum pore-fillings corresponded to 70-80% of filled pore volume, if the intraporous phase was considered to be crystalline Co(NO(3))(2)·6H(2)O. However, diffraction was absent in XRD both from the ordered mesopores at low scattering angles and from crystalline cobalt nitrate phases at high angles. Hence, an amorphous, lower density, intraporous Co(NO(3))(2)·6H(2)O phase was proposed to fill the pores completely. Equilibration at 60 °C in a closed vessel was essential for successful melt infiltration. In an open crucible, dehydration of the precursor prior to infiltration inhibited homogeneous filling of support particles. The dispersion and distribution of Co(3)O(4) after calcination could be controlled using the same toolbox as for preparation via solution impregnation: confinement and the calcination gas atmosphere. Using ordered mesoporous silica supports as well as an industrial silica gel support, catalysts with Co metal loadings in the range of 10-22 wt % were prepared. The Co(3)O(4) crystallite sizes ranged from 4 to 10 nm and scaled with the support pore diameters. By calcination in N(2), pluglike nanoparticles were obtained that formed aggregates over several pore widths, while calcination in 1% NO/N(2) led to the formation of smaller individual nanoparticles. After reduction, the Co/SiO(2) catalysts showed high activity for the Fischer-Tropsch synthesis, illustrating the applicability of melt infiltration for supported catalyst preparation.  相似文献   
130.
The electrocatalytic activity of bimetallic BiPd catalysts supported on Sibunit carbon towards hydrogen oxidation/evolution reactions (HOR/HER) was studied in a gas diffusion electrode (GDE) setup. Catalysts were synthesized by deposition of Pd on the carbon support, followed by impregnation of Pd/C precursor with Bi(NO3)3 solution and reduction in hydrogen. Transmission electron microscopy and local EDX elemental analysis revealed that BiPd/C catalysts contain bimetallic particles with narrow size distribution with maxima at 3.2–4.1 nm. X-ray diffraction evidenced that bimetallic particles are constituted by Pd–Bi solid solution. It was shown that modification of Pd/C by bismuth increases the specific activity of palladium towards HOR/HER by a factor of 3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号