首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1482篇
  免费   66篇
  国内免费   4篇
化学   1298篇
晶体学   4篇
力学   9篇
数学   107篇
物理学   134篇
  2024年   1篇
  2023年   20篇
  2022年   26篇
  2021年   40篇
  2020年   39篇
  2019年   26篇
  2018年   28篇
  2017年   26篇
  2016年   51篇
  2015年   60篇
  2014年   71篇
  2013年   90篇
  2012年   104篇
  2011年   103篇
  2010年   61篇
  2009年   56篇
  2008年   94篇
  2007年   97篇
  2006年   87篇
  2005年   78篇
  2004年   57篇
  2003年   44篇
  2002年   58篇
  2001年   13篇
  2000年   28篇
  1999年   17篇
  1998年   14篇
  1997年   10篇
  1996年   7篇
  1995年   18篇
  1994年   9篇
  1993年   11篇
  1992年   11篇
  1991年   12篇
  1990年   10篇
  1989年   9篇
  1988年   5篇
  1987年   9篇
  1986年   6篇
  1985年   10篇
  1984年   11篇
  1983年   9篇
  1982年   1篇
  1981年   6篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1961年   1篇
排序方式: 共有1552条查询结果,搜索用时 78 毫秒
951.
Lysine acylations, a family of diverse protein modifications varying in acyl‐group length, charge, and saturation, are linked to many important physiological processes. Only a small set of substrate‐promiscuous lysine acetyltransferases and deacetylases (KDACs) install and remove this vast variety of modifications. Engineered KDACs that remove only one type of acylation would help to dissect the different contributions of distinct acylations. We developed a bacterial selection system for the directed evolution of KDACs and identified variants up to 400 times more selective for butyryl‐lysine compared to crotonyl‐lysine. Structural analyses revealed that the enzyme adopts different conformational states depending on the type of acylation of the bound peptide. We used the butyryl‐selective KDAC variant to shift the cellular acylation spectrum towards increased lysine crotonylation. These new enzymes will help in dissecting the roles of different lysine acylations in cell physiology.  相似文献   
952.
953.
954.
955.
956.
957.
958.
959.
The marine natural products amphidinolide C ( 1 ) and F ( 4 ) differ in their side chains but share a common macrolide core with a signature 1,4‐diketone substructure. This particular motif inspired a synthesis plan predicating a late‐stage formation of this non‐consonant (“umpoled”) pattern by a platinum‐catalyzed transannular hydroalkoxylation of a cycloalkyne precursor. This key intermediate was assembled from three building blocks ( 29 , 41 and 47 (or 65 )) by Yamaguchi esterification, Stille cross‐coupling and a macrocyclization by ring‐closing alkyne metathesis (RCAM). This approach illustrates the exquisite alkynophilicity of the catalysts chosen for the RCAM and alkyne hydroalkoxylation steps, which activate triple bonds with remarkable ease but left up to five other π‐systems in the respective substrates intact. Interestingly, the inverse chemoselectivity pattern was exploited for the preparation of the tetrahydrofuran building blocks 47 and 65 carrying the different side chains of the two target macrolides. These fragments derive from a common aldehyde precursor 46 formed by an exquisitely alkene‐selective cobalt‐catalyzed oxidative cyclization of the diunsaturated alcohol 44 , which left an adjacent acetylene group untouched. The northern sector 29 was prepared by a two‐directional Marshall propargylation strategy, whereas the highly adorned acid subunit 41 derives from D ‐glutamic acid by an intramolecular oxa‐Michael addition and a proline‐mediated hydroxyacetone aldol reaction as the key steps; the necessary Me3Sn‐group on the terminus of 41 for use in the Stille coupling was installed via enol triflate 39 , which was obtained by selective deprotonation/triflation of the ketone site of the precursor 38 without competing enolization of the ester also present in this particular substrate.  相似文献   
960.
Convenient syntheses for 1,5-dimethoxy-4-naphthol and 2-allyl-5-methoxy-1,4-naphthoquinone have been developed. A key step in the formation of the title compounds involved methylation or allylation of an intermediate Diels-Alder adduct.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号