首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   988篇
  免费   29篇
  国内免费   7篇
化学   490篇
晶体学   17篇
力学   29篇
数学   137篇
物理学   351篇
  2020年   8篇
  2019年   15篇
  2018年   10篇
  2017年   12篇
  2016年   13篇
  2015年   16篇
  2014年   24篇
  2013年   60篇
  2012年   32篇
  2011年   47篇
  2010年   15篇
  2009年   21篇
  2008年   39篇
  2007年   41篇
  2006年   43篇
  2005年   48篇
  2004年   29篇
  2003年   30篇
  2002年   31篇
  2001年   27篇
  2000年   15篇
  1999年   10篇
  1998年   9篇
  1997年   12篇
  1996年   21篇
  1995年   13篇
  1994年   11篇
  1993年   17篇
  1992年   13篇
  1991年   13篇
  1990年   14篇
  1989年   24篇
  1988年   15篇
  1987年   18篇
  1985年   28篇
  1984年   18篇
  1983年   8篇
  1982年   14篇
  1981年   13篇
  1980年   19篇
  1979年   7篇
  1978年   18篇
  1977年   15篇
  1976年   14篇
  1975年   12篇
  1974年   10篇
  1973年   7篇
  1972年   8篇
  1971年   8篇
  1969年   8篇
排序方式: 共有1024条查询结果,搜索用时 15 毫秒
141.
We consider amalgamated free product II1 factors M = M 1*B M 2*B … and use “deformation/rigidity” and “intertwining” techniques to prove that any relatively rigid von Neumann subalgebra Q ⊂ M can be unitarily conjugated into one of the M i ’s. We apply this to the case where the M i ’s are w-rigid II1 factors, with B equal to either C, to a Cartan subalgebra A in M i , or to a regular hyperfinite II1 subfactor R in M i , to obtain the following type of unique decomposition results, àla Bass–Serre: If M = (N 1 * CN2*C …) t , for some t > 0 and some other similar inclusions of algebras C ⊂ N i then, after a permutation of indices, (B ⊂ M i ) is inner conjugate to (C ⊂ N i ) t , for all i. Taking B = C and , with {t i } i⩾1 = S a given countable subgroup of R + *, we obtain continuously many non-stably isomorphic factors M with fundamental group equal to S. For B = A, we obtain a new class of factors M with unique Cartan subalgebra decomposition, with a large subclass satisfying and Out(M) abelian and calculable. Taking B = R, we get examples of factors with , Out(M) = K, for any given separable compact abelian group K.  相似文献   
142.
Autoregulatory domains found within kinases may provide more unique targets for chemical inhibitors than the conserved ATP-binding pocket targeted by most inhibitors. The kinase Pak1 contains an autoinhibitory domain that suppresses the catalytic activity of its kinase domain. Pak1 activators relieve this autoinhibition and initiate conformational rearrangements and autophosphorylation events leading to kinase activation. We developed a screen for allosteric inhibitors targeting Pak1 activation and identified the inhibitor IPA-3. Remarkably, preactivated Pak1 is resistant to IPA-3. IPA-3 also inhibits activation of related Pak isoforms regulated by autoinhibition, but not more distantly related Paks, nor >200 other kinases tested. Pak1 inhibition by IPA-3 in live cells supports a critical role for Pak in PDGF-stimulated Erk activation. These studies illustrate an alternative strategy for kinase inhibition and introduce a highly selective, cell-permeable chemical inhibitor of Pak.  相似文献   
143.
144.
Recently reported energy-consistent relativistic pseudopotentials have been used with series of matching correlation consistent basis sets in benchmark calculations of various atomic and molecular properties. The basis set convergence of the 4d metal electron affinities and 5s2-->5s0 excitation energies are reported at the CCSD(T) level of theory, and the effects of valence and 4s4p correlation are investigated. In addition the impact of correlating the low-lying 3d electrons was also studied in all-electron Douglas-Kroll-Hess (DKH) calculations, which also included the ionization potentials and 5s2-->5s1 excitation energies. For all four atomic properties, higher order coupled cluster calculations through CCSDTQ are reported. The final calculated values are generally all within 1 kcal/mol of experiment. A notable exception is the ionization potential of Tc, the currently accepted experimental value of which is suggested to be too high by about 3 kcal/mol. Molecular calculations are also reported for the low-lying electronic states of ZrO and RuF, as well as the ground electronic state of Pd2. The effects of spin-orbit coupling are investigated for these cases in pseudopotential calculations. Wherever possible, the pseudopotential results have been calibrated against DKH calculations with correlation consistent basis sets of triple-zeta quality. In all cases the calculated data for these species are in very good agreement with experiment. In particular, the correct electronic ground state for the RuF molecule (4Phi92) was obtained, which was made possible by utilizing systematic sequences of correlation consistent basis sets.  相似文献   
145.
Here we discuss the removal of nitrogen dioxide, an important toxic industrial chemical and pollutant, from air using the MOF UiO‐66‐NH2. The amine group is found to substantially aid in the removal, resulting in unprecedented removal capacities upwards of 1.4 g of NO2 /g of MOF. Furthermore, whereas NO2 typically generates substantial quantities of NO on sorbents, the amount generated by UiO‐66‐NH2 is significantly reduced. Of particular significance is the formation of a diazonium ion on the aromatic ring of the MOF, and the potential reduction of NO2 to molecular nitrogen.  相似文献   
146.
The threat associated with chemical warfare agents (CWAs) motivates the development of new materials to provide enhanced protection with a reduced burden. Metal–organic frame‐works (MOFs) have recently been shown as highly effective catalysts for detoxifying CWAs, but challenges still remain for integrating MOFs into functional filter media and/or protective garments. Herein, we report a series of MOF–nanofiber kebab structures for fast degradation of CWAs. We found TiO2 coatings deposited via atomic layer deposition (ALD) onto polyamide‐6 nanofibers enable the formation of conformal Zr‐based MOF thin films including UiO‐66, UiO‐66‐NH2, and UiO‐67. Cross‐sectional TEM images show that these MOF crystals nucleate and grow directly on and around the nanofibers, with strong attachment to the substrates. These MOF‐functionalized nanofibers exhibit excellent reactivity for detoxifying CWAs. The half‐lives of a CWA simulant compound and nerve agent soman (GD) are as short as 7.3 min and 2.3 min, respectively. These results therefore provide the earliest report of MOF–nanofiber textile composites capable of ultra‐fast degradation of CWAs.  相似文献   
147.
Two types of halogen...halide synthons are investigated on the basis of theoretical and crystallographic studies; the simple halogen...halide synthons and the charge assisted halogen...halide synthons. The former interactions were investigated theoretically (ab initio) by studying the energy of interaction of a halide anion with a halocarbon species as a function of Y...X- separation distance and the C-Y...X- angle in a series of complexes (R-Y...X-, R=methyl, phenyl, acetyl or pyridyl; Y=F, Cl, Br, or I; X-=F-, Cl-, Br-, or I-). The theoretical study of the latter interaction type was investigated in only one system, the [(4BP)Cl]2 dimer, (4BP=4-bromopyrdinium cation). Crystal structure determinations, to complement the latter theoretical calculations, were performed on 13 n-chloropyridinium and n-bromopyridinium halide salts (n=2-4). The theoretical and crystallographic studies indicate that these interactions are controlled by electrostatics and are characterized by linear C-Y...X- angles and separation distances less than the sum of van der Waals radius (rvdW) of the halogen atom and the ionic radii of the halide anion. The strength of these contacts from calculations varies from weak or absent, e.g., H3C-Cl...I-, to very strong, e.g., HCC-I...F- (energy of interaction ca. -153 kJ/mol). The strengths of these contacts are influenced by four factors: (a) the type of the halide anion; (b) the type of the halogen atom; (c) the hybridization of the ipso carbon; (d) the nature of the functional groups. The calculations also show that charge assisted halogen...halide synthons have a comparable strength to simple halogen...halide synthons. The nature of these contacts is explained on the basis of an electrostatic model.  相似文献   
148.
The correlation consistent Composite Approach (ccCA), which has been shown to achieve chemical accuracy (+/-1 kcal mol-1) for a large benchmark set of main group and s-block metal compounds, is used to compute enthalpies of formation for a set of 17 3d transition metal species. The training set includes a variety of metals, ligands, and bonding types. Using the correlation consistent basis sets for the 3d transition metals, we find that gas-phase enthalpies of formation can be efficiently calculated for inorganic and organometallic molecules with ccCA. However, until the reliability of gas-phase transition metal thermochemistry is improved, both experimentally and theoretically, a large experimental training set where uncertainties are near +/-1 kcal mol-1 (akin to commonly used main group benchmarking sets) remains an ambitious goal. For now, an average deviation of +/-3 kcal mol-1 appears to be the initial goal of "chemical accuracy" for ab initio transition metal model chemistries. The ccCA is also compared to a more robust but relatively expensive composite approach primarily utilizing large basis set coupled cluster computations. For a smaller training set of eight molecules, ccCA has a mean absolute deviation (MAD) of 3.4 kcal mol-1 versus the large basis set coupled-cluster-based model chemistry, which has a MAD of 3.1 kcal mol-1. However, the agreement for transition metal complexes is more system dependent than observed in previous benchmark studies of composite methods and main group compounds.  相似文献   
149.
Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for KrF+, KrF-, KrF2, KrF3+, KrF4, KrF5+, and KrF6 from coupled-cluster theory (CCSD(T)) calculations with effective core potential correlation-consistent basis sets for krypton. To achieve near chemical accuracy (+/-1 kcal/mol), three corrections were added to the complete basis set binding energies based on frozen core coupled-cluster theory energies: a correction for core-valence effects, a correction for scalar relativistic effects, and a correction for first-order atomic spin-orbit effects. Vibrational zero point energies were computed at the coupled-cluster level of theory. The calculated value for the heat of formation of KrF2 is in excellent agreement with the experimental value. Contrary to the analogous xenon fluorides, KrF2, KrF4, and KrF6 are predicted to be thermodynamically unstable with respect to loss of F2. An analysis of the energetics of KrF4 and KrF6 with respect to fluorine atom loss together with calculations of the transition states for the intramolecular loss of F2 show that fluorine atom loss is the limiting factor determining the kinetic stabilities of these molecules. Whereas KrF4 possesses a marginal energy barrier of 10 kcal/mol toward fluorine atom loss and might be stable at moderately low temperatures, the corresponding barrier in KrF6 is only 0.9 kcal/mol, suggesting that it could exist only at very low temperatures. Although the simultaneous reactions of either two or four fluorine atoms with KrF2 to give KrF4 or KrF6, respectively, are exothermic, they do not represent feasible synthetic approaches because the attack of the fluorine ligands of KrF2 by the fluorine atoms, resulting in F2 abstraction, is thermodynamically favored over oxidative fluorination of the krypton central atom. Therefore, KrF6 could exist only at very low temperatures, and even the preparation of KrF4 will be extremely difficult.  相似文献   
150.
A global potential energy surface has been constructed for the system HgBr+Ar-->Hg+Br+Ar to determine temperature dependent rate constants for the collision-induced dissociation (CID) and recombination of Hg and Br atoms. The surface was decomposed using a many-body expansion. Accurate two-body potentials for HgBr, HgAr, and ArBr were calculated using coupled cluster theory with single and double excitations and a perturbative treatment of triple excitations [CCSD(T)], as well as the multireference averaged coupled pair functional method. Correlation consistent basis sets were used to extrapolate to the complete basis set limit and corrections were included to account for scalar and spin-orbit relativistic effects, core-valence correlation, and the Lamb shift. The three-body potential was computed with the CCSD(T) method and triple-zeta quality basis sets. Quasiclassical trajectories using the final analytical potential surface were directly carried out on the CID of HgBr by Ar for a large sampling of initial rotational, vibrational, and collision energies. The recombination rate of Hg and Br atoms is a likely first step in mercury depletion events that have been observed in the Arctic troposphere during polar sunrise. The effective second order rate constant for this process was determined in this work from the calculated CID rate as a function of temperature using the principle of detailed balance, which resulted in k(T) = 1.2 x 10(-12) cm(3) molecule(-1) s(-1) at 260 K and 1 bar pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号