首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   987篇
  免费   29篇
  国内免费   8篇
化学   489篇
晶体学   17篇
力学   29篇
数学   141篇
物理学   348篇
  2020年   8篇
  2019年   15篇
  2018年   10篇
  2017年   12篇
  2016年   13篇
  2015年   16篇
  2014年   25篇
  2013年   62篇
  2012年   32篇
  2011年   47篇
  2010年   15篇
  2009年   21篇
  2008年   39篇
  2007年   41篇
  2006年   44篇
  2005年   48篇
  2004年   29篇
  2003年   30篇
  2002年   28篇
  2001年   25篇
  2000年   16篇
  1999年   11篇
  1998年   9篇
  1997年   12篇
  1996年   21篇
  1995年   13篇
  1994年   11篇
  1993年   17篇
  1992年   13篇
  1991年   13篇
  1990年   14篇
  1989年   24篇
  1988年   15篇
  1987年   18篇
  1985年   28篇
  1984年   19篇
  1983年   9篇
  1982年   14篇
  1981年   13篇
  1980年   19篇
  1979年   7篇
  1978年   18篇
  1977年   15篇
  1976年   14篇
  1975年   12篇
  1974年   10篇
  1973年   7篇
  1972年   8篇
  1971年   8篇
  1969年   8篇
排序方式: 共有1024条查询结果,搜索用时 15 毫秒
991.
There have been numerous efforts to incorporate dioxygen into chemical processes because of its economic and environmental benefits. The conversion of dioxygen to water is one such example, having importance in both biology and fuel cell technology. Metals or metal complexes are usually necessary to promote this type of reaction and several systems have been reported. However, mechanistic insights into this conversion are still lacking, especially the detection of intermediates. Reported herein is the first example of a monomeric manganese(II) complex that can catalytically convert dioxygen to water. The complex contains a tripodal ligand with two urea groups and one carboxyamidopyridyl unit; this ligand creates an intramolecular hydrogen-bonding network within the secondary coordination sphere that aids in the observed chemistry. The manganese(II) complex is five-coordinate with an N(4)O primary coordination sphere; the oxygen donor comes from the deprotonated carboxyamido moiety. Two key intermediates were detected and characterized: a peroxo-manganese(III) species and a hybrid oxo/hydroxo-manganese(III) species (1). The formulation of 1 was based on spectroscopic and analytical data, including an X-ray diffraction analysis. Reactivity studies showed dioxygen was catalytically converted to water in the presence of reductants, such as diphenylhydrazine and hydrazine. Water was confirmed as a product in greater than 90% yield. A mechanism was proposed that is consistent with the spectroscopy and product distribution, in which the carboxyamido group switches between a coordinated ligand and a basic site to scavenge protons produced during the catalytic cycle. These results highlight the importance of incorporating intramolecular functional groups within the secondary coordination sphere of metal-containing catalysts.  相似文献   
992.
High level ab initio potential energy functions have been constructed for LiH in order to predict vibrational levels up to dissociation. After careful tests of the parameters of the calculation, the final adiabatic potential energy function has been composed from: (a) an ab initio nonrelativistic potential obtained at the multireference configuration interaction with singles and doubles level including a size-extensivity correction and quintuple-sextuple ζ extrapolations of the basis, (b) a mass-velocity-Darwin relativistic correction, and (c) a diagonal Born-Oppenheimer (BO) correction. Finally, nonadiabatic effects have also been considered by including a nonadiabatic correction to the kinetic energy operator of the nuclei. This correction is calculated from nonadiabatic matrix elements between the ground and excited electronic states. The calculated vibrational levels have been compared with those obtained from the experimental data [J. A. Coxon and C. S. Dickinson, J. Chem. Phys. 134, 9378 (2004)]. It was found that the calculated BO potential results in vibrational levels which have root mean square (rms) deviations of about 6-7 cm(-1) for LiH and ~3 cm(-1) for LiD. With all the above mentioned corrections accounted for, the rms deviation falls down to ~1 cm(-1). These results represent a drastic improvement over previous theoretical predictions of vibrational levels for all isotopologues of LiH.  相似文献   
993.
The MP2/6-31G*(0.25) π-π or π(+)-π T-shaped (edge-to-face) interactions between neutral or protonated histidine and adenine were considered using computational models of varying size to determine the effects of the protein and DNA backbones on the preferred dimer structure and binding strength. The overall consequences of the backbones are reasonably subtle for the neutral adenine-histidine T-shaped dimers. Furthermore, the minor changes in the binding strengths of these dimers upon model extension arise from additional (attractive) backbone-π (bb-π) contacts and changes in the preferred π-π orientations, which is verified by the quantum theory of atoms in molecules (QTAIM). Since the binding strength of the extended dimer equals the sum of the individual backbone-π and π-π contributions, the π-π component is not appreciably affected by polarization of the ring upon inclusion of the biological backbone. In contrast, the larger effect of the backbone on the protonated histidine dimers cannot simply be predicted as the sum of changes in the π-π and bb-π components regardless of the dimer type or model. This suggests, and QTAIM qualitatively supports, that the magnitude of the π(+)-π contribution changes, which is likely due to alterations in the electrostatic landscape of the monomer rings upon inclusion of the biological backbone that largely affect T-shaped dimers. These findings differ from those previously reported for (neutral) π-π stacked and (metallic) cation-π interactions, which highlights the distinct properties of each (π-π, π(+)-π, and cation-π) classification of noncovalent interaction. Furthermore, these results emphasize the importance of considering backbone-π interactions when analyzing contacts that appear in experimental crystal structures and cautions the use of truncated models when evaluating the magnitude of the π(+)-π contribution present in large biological complexes.  相似文献   
994.
This paper argues for a new constitutive model, an elastic-decohesive model for sea ice. The model is motivated by examining satellite observations of the Arctic processed to show ice deformation in the form of divergence, shear and vorticity. The model is implemented numerically in the material-point method and used to predict motion and deformation of sea ice by simulating a region of the Beaufort Sea. The model is able to capture the qualitative and statistical behavior of localized deformation seen in the observations.  相似文献   
995.
Tonle Sap Lake (Cambodia) is the largest freshwater lake in SE Asia, and is reported to have one of the highest freshwater fish productions anywhere. During the dry season (November–April) the lake drains through a tributary to the Mekong River. The flow in the connecting tributary completely reverses during the wet monsoon (May–October), adding huge volumes of water back to the lake, increasing its area about fourfold. We hypothesize that nutrients are at least partially delivered via groundwater discharge, especially during the draining portion of the annual flood cycle. We surveyed over 200 km in the northern section of the lake using a customized system that measures natural 222Rn (radon), temperature, conductivity, GPS coordinates and water depth while underway. Results showed that there were portions of the lake with significant enrichments in radon, indicating likely groundwater inputs. These same areas were generally characterized by lower electrical conductivities. Samples collected from nearby wells also showed a general inverse relationship between radon and conductivity. Our data suggest that groundwater pathways are important, accounting for roughly 10–20 % of the freshwater flow of the Tonle Sap tributary (connection to the Mekong River), the largest single source of fresh water to the lake. Nutrient inputs from these inputs, because of higher concentrations in groundwater, will be correspondingly higher.  相似文献   
996.
Ceramide is a key metabolite in both anabolic and catabolic pathways of sphingolipids. The very long fatty acyl chain ceramides N-(docosanoyl)-sphing-4-enine (Cer(22:0)) and N-(tetracosanoyl)-sphing-4-enine (Cer(24:0)) are associated with multiple biological functions. Elevated levels of these sphingolipids in tissues and in the circulation have been associated with insulin resistance and diabetes. To facilitate quantification of these very long chain ceramides in clinical samples from human subjects, we have developed a sensitive, accurate, and high-throughput assay for determination of Cer(22:0) and Cer(24:0) in human plasma. Cer(22:0) and Cer(24:0) and their deuterated internal standards were extracted by protein precipitation and chromatographically separated by HPLC. The analytes and their internal standards were ionized using positive-ion electrospray mass spectrometry, then detected by multiple-reaction monitoring with a tandem mass spectrometer. Total liquid chromatography–tandem mass spectrometry (LC-MS/MS) runtime was 5 min. The assay exhibited a linear dynamic range of 0.02–4 and 0.08–16 μg/ml for Cer(22:0) and Cer(24:0), respectively, in human plasma with corresponding absolute recoveries from plasma at 109 and 114 %, respectively. The lower limit of quantifications were 0.02 and 0.08 μg/ml for Cer(22:0) and Cer(24:0), respectively. Acceptable precision and accuracy were obtained for concentrations over the calibration curve ranges. With the semi-automated format and short LC runtime for the assay, a throughput of ~200 samples/day can easily be achieved.
Figure
LC-MS/MS chromatograms for Cer(22:0) and Cer(24:0) in LLOQ, in which the analyte and internal standard are shown in blue and red, respectively  相似文献   
997.
The design of smart nonviral vectors for gene delivery is of prime importance for the successful implementation of gene therapies. In particular, degradable analogues of macromolecules represent promising targets as they would combine the multivalent presentation of multiple binding units that is necessary for achieving effective complexation of therapeutic oligonucleotides with the controlled degradation of the vector that would in turn trigger drug release. Toward this end, we have designed and synthesized hybrid polyacylhydrazone‐based dynamic materials that combine bis‐functionalized cationic monomers with ethylene oxide containing monomers. Polymer formation was characterized by 1H and DOSY NMR spectroscopy and was found to take place at high concentration, whereas macrocycles were predominantly formed at low concentration. HPLC monitoring of solutions of these materials in aqueous buffers at pH values ranging from 5.0 to 7.0 revealed their acid‐catalyzed degradation. An ethidium bromide displacement assay and gel electrophoresis clearly demonstrated that, despite being dynamic, these materials are capable of effectively complexing dsDNA in aqueous buffer and biological serum at N/P ratios comparable to polyethyleneimine polymers. The self‐assembly of dynamic covalent polymers through the incorporation of a reversible covalent bond within their main chain is therefore a promising strategy for generating degradable materials that are capable of establishing multivalent interactions and effectively complexing dsDNA in biological media.  相似文献   
998.
The diatomic carbon molecule has a complex electronic structure with a large number of low-lying electronic excited states. In this work, the potential energy curves (PECs) of the four lowest lying singlet states ( $X^{1} \Sigma^{ + }_{g}$ , $A^{1} \Pi_{u}$ , $B^{1} \Delta_{g}$ , and $B^{\prime1} \Sigma^{ + }_{g}$ ) were obtained by high-level ab initio calculations. Valence electron correlation was accounted for by the correlation energy extrapolation by intrinsic scaling (CEEIS) method. Additional corrections to the PECs included core–valence correlation and relativistic effects. Spin–orbit corrections were found to be insignificant. The impact of using dynamically weighted reference wave functions in conjunction with CEEIS was examined and found to give indistinguishable results from the even weighted method. The PECs showed multiple curve crossings due to the $B^{1} \Delta_{g}$ state as well as an avoided crossing between the two $^{1} \Sigma^{ + }_{g}$ states. Vibrational energy levels were computed for each of the four electronic states, as well as rotational constants and spectroscopic parameters. Comparison between the theoretical and experimental results showed excellent agreement overall. Equilibrium bond distances are reproduced to within 0.05 %. The dissociation energies of the states agree with experiment to within ~0.5 kcal/mol, achieving “chemical accuracy.” Vibrational energy levels show average deviations of ~20 cm?1 or less. The $B^{1} \Delta_{g}$ state shows the best agreement with a mean absolute deviation of 2.41 cm?1. Calculated rotational constants exhibit very good agreement with experiment, as do the spectroscopic constants.  相似文献   
999.
Metal–organic framework materials (MOFs) have recently been shown in some cases to exhibit strong negative thermal expansion (NTE) behavior, while framework interpenetration has been found to reduce NTE in many materials. Using powder and single‐crystal diffraction methods we investigate the thermal expansion behavior of interpenetrated Cu3(btb)2 (MOF‐14) and find that it exhibits an anomalously large NTE effect. Temperature‐dependent structural analysis shows that, contrary to other interpenetrated materials, in MOF‐14 the large positive thermal expansion of weak interactions that hold the interpenetrating networks together results in a low‐energy contractive distortion of the overall framework structure, demonstrating a new mechanism for NTE.  相似文献   
1000.
We present a systematic study of metal–organic frameworks (MOFs) for the storage of oxygen. The study starts with grand canonical Monte Carlo simulations on a suite of 10 000 MOFs for the adsorption of oxygen. From these data, the MOFs were down selected to the prime candidates of HKUST‐1 (Cu‐BTC) and NU‐125, both with coordinatively unsaturated Cu sites. Oxygen isotherms up to 30 bar were measured at multiple temperatures to determine the isosteric heat of adsorption for oxygen on each MOF by fitting to a Toth isotherm model. High pressure (up to 140 bar) oxygen isotherms were measured for HKUST‐1 and NU‐125 to determine the working capacity of each MOF. Compared to the zeolite NaX and Norit activated carbon, NU‐125 has an increased excess capacity for oxygen of 237 % and 98 %, respectively. These materials could ultimately prove useful for oxygen storage in medical, military, and aerospace applications.  相似文献   
[首页] « 上一页 [94] [95] [96] [97] [98] [99] 100 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号