Surfaces coated with poly(ethylene oxide) containing nonionic polymers are of interest in medical applications due to, among other things, the low adsorption of proteins on such surfaces. In this paper we have studied the interfacial properties of surfaces coated with PEO by measuring the forces acting between two such surfaces in water and across a protein solution as well as between one such surface and a surface carrying adsorbed proteins. One type of surface coating was a graft copolymer of poly(ethylene imine) and poly(ethylene oxide) where the cationic poly(ethylene imine) group anchored the polymer to negatively charged mica surfaces. Three different ways to prepare this coating was used and compared. It was found that this coating was not stable in the presence of lysozyme, a small positively charged protein, when the PEO graft density was low. The other type of coating was obtained by adsorbing ethyl(hydroxyethyl)-cellulose onto hydrophobised mica surfaces. The driving force for adsorption is in this case the hydrophobic interaction between nonpolar segments of the polymer and the surface. The EHEC coating was stable in the presence of lysozyme and the interactions between adsorbed layers of lysozyme and EHEC coated surfaces are purely repulsive due to long-range steric forces. 相似文献
Abstract Synthesis of biologically active oligosaccharides, haptens and their protein conjugates is a major area of interest because of their role in antigen-antibody interaction and receptor effects1. A number of these molecules contain α-or β-linked 2-acetamido-2-deoxy-D-glucosamine (GlcNAc) moieties. Most commonly, during the oligosaccharide synthesis, introduction of the β-glycosidically linked GlcNAc residue is achieved by either the oxazoline2 or the phthalimido method3. Of these, the latter is preferred because 2-N-phthalimido protected glycosamine units having a halogen or a thioalkyl group at C-1 have consistently proved to be more efficient donors than are the oxazolines. However, time and again, subsequent conversion of the N-phthalimido to amine by hydrazinolysis has proved inadequate. This has often resulted in a poor overall yield after an otherwise efficient synthesis. Recently it was shown that the phthalimido function could be removed under mild conditions from a number of amino acids4. We now report that this technique can be efficiently used for the deprotection of the phthalimido function in suitably protected carbohydrate compounds (2,3 and 5). 相似文献
ABSTRACT Ammonium 2,3,6-trideoxy-2,6-epithio-D-manno-2-octenoate (8), ammonium 2,3,6-trideoxy-2,6-epithio-D-glycero-D-talo-octanoate (10a), ammonium 2,3,6-trideoxy-2,6-epithio-D-glycero-D-galacto-octanoate (10b) and ammonium 2,3,6-trideoxy-2,6-epithio-oxa-D-glycero-D-galacto-octanoate (13) have been synthesised as potential inhibitors of the enzyme CMP-KDO synthetase. The key step in the synthesis of 8 was the elimination of water from methyl 3,6-dideoxy-4,5:7,8-di-O-isopropylidene-6-thio-D-manno-2-octulosonate (4) using chlorodiphenylphosphine, imidazole and bromine to give the unsaturated methyl 2,3,6-trideoxy-2,6-epithio-4,5:7,8-di-O-isopropylidene-D-manno-2-octenoate (5). For the synthesis of 10a and 10b, zinc reduction of methyl 3,6-dideoxy-4,5:7,8-di-O-isopropylidene-6-S-(4-methoxybenzyl)-6-thio-2-O-(trichloro-tert-butoxycarbonyl)-D-manno-2-octenoate (2) gave an epimeric mixture of an α-hydroxyester 6 which was ring closed by in situ activation of the hydroxyl group using triphenylphosphine and tri-iodoimidazole followed by cleavage of the p-methoxybenzyl group to give 7a and 7b, which then were deprotected to give 10a and 10b. 相似文献
ABSTRACT Syntheses are described of a new ring system, namely derivatives of N-acetyl [2-deoxy-β-D-mannopyranosid]urono-6,2-lactam. These were formed by participation of a 2-acetamido-2-deoxy group in the oxidation using pyridinium dichromate of a 6-hydroxyl group in a mannopyranosidic system The structures of the new compounds were determined mainly by NMR experiments inter alia by HMBC techniques. 相似文献
Pretreatment of polystyrene beads with a nonpolar organic solvent is the key for the generation of mechanically robust tablets consisting of neat functionalized polystyrene beads, both alone and in combination with solid reagents or catalysts. The novel dosing methodology provides accurately preweighed tablets in virtually any shape and size and with excellent disintegration properties, speeding up parallel solution and solid phase synthesis. The use of tablets is demonstrated in parallel Mitsunobu and acylation reactions. 相似文献
Abstract–Solvent induced absorption spectral shifts of the electronic transition from ground 1 Ag state to the excited 1Bu state in carotenoids have been studied. It is shown that the shift depends only on dispersion interactions in non-polar solvents. In polar media there is just a small extra contribution to the red-shift, due to other forms of interactions. The spectral shifts are well described by the theory, which expresses the shift relative to the gas phase value, as a function of solvent polarizability. The main conclusion is that the dominating mechanism behind the large red-shifted absorbance of carotenoids in the proteinacous environment, in vivo, is the mutual polarizability interactions between the carotenoids and the surrounding medium. The solution-phase values of the dipole moments of the lAg to 1Bu transitions and the differences of isotropic polarizability between 1Bu and lAg states of carotenoids in non-polar solvents are calculated and found to be around 13 D and 360 Å3 respectively. From the great overlap of absorption spectra between carotenoids in quinoline and carotenoids in vivo in purple bacterial antenna complexes, it can be expected that the carotenoids are surrounded by several aromatic amino acids in vivo. Comparisons have been done between the exicted states in carotenoids and in linear conjugated polyenes. 相似文献
Accurate calculation of hydrogen abstraction reaction barriers is a challenging problem, often requiring high level quantum chemistry methods that scale poorly with system size. Quantum Monte Carlo (QMC) methods provide an alternative approach that exhibit much better scaling, but these methods are still computationally expensive. We describe approaches that can significantly reduce the cost of QMC calculations of barrier heights, using the hydrogen abstraction of methanol by a hydrogen atom as an illustrative example. By analysing the combined influence of trial wavefunctions and pseudopotential quadrature settings on the barrier heights, variance, and time‐step errors, we devise a simple protocol that minimizes the cost of the QMC calculations while retaining accuracy comparable to large‐basis coupled cluster theory. We demonstrate that this protocol is transferable to other hydrogen abstraction reactions. 相似文献
In order to deliver reliable results for a multitude of different scenarios, e.g. emergency preparedness, environmental monitoring, nuclear decommissioning and waste management, there is a constant process of method development in the field of radioanalytical chemistry. This work presents the results of a method comparison exercise aimed at quantifying 90Sr and 239,240Pu in environmental soil samples, with the intention of evaluating the performance and applicability of different methods. From the methods examined in this work, recommendations are given in order to find a radioanalytical measurement procedure, for 90Sr and 239,240Pu analysis, which is fit-for-purpose for a particular scenario.