首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17818篇
  免费   534篇
  国内免费   100篇
化学   11899篇
晶体学   135篇
力学   544篇
综合类   5篇
数学   2536篇
物理学   3333篇
  2023年   131篇
  2022年   391篇
  2021年   477篇
  2020年   357篇
  2019年   375篇
  2018年   334篇
  2017年   293篇
  2016年   622篇
  2015年   510篇
  2014年   609篇
  2013年   1073篇
  2012年   1121篇
  2011年   1233篇
  2010年   865篇
  2009年   779篇
  2008年   1088篇
  2007年   1040篇
  2006年   912篇
  2005年   789篇
  2004年   660篇
  2003年   592篇
  2002年   538篇
  2001年   304篇
  2000年   278篇
  1999年   209篇
  1998年   184篇
  1997年   174篇
  1996年   189篇
  1995年   158篇
  1994年   160篇
  1993年   144篇
  1992年   125篇
  1991年   113篇
  1990年   105篇
  1989年   99篇
  1988年   100篇
  1987年   71篇
  1986年   87篇
  1985年   112篇
  1984年   88篇
  1983年   77篇
  1982年   78篇
  1981年   67篇
  1980年   76篇
  1979年   67篇
  1978年   72篇
  1977年   48篇
  1976年   62篇
  1975年   49篇
  1974年   46篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
A simple isotherm equation is derived for the adsorption of an organic component onto activated carbon in presence of water vapour. The theoretical results are compared with experimental data for toluene-water vapour-activated carbon, which were published byRipperger andGermerdonk [10].
Vorhersage der Adsorption einer organischen Komponente und Wasserdampf an Aktivkohle
Zusammenfassung Es wird eine einfache Adsorptionsisotherme abgeleitet, welche die gleichzeitige Adsorption eines organischen Stoffes und Wasser an Aktivkohle beschreibt. Die theoretischen Ergebnisse werden mit experimentellen Resultaten vonRipperger undGermerdonk [10] für Toluol-Wasser-Aktivkohle verglichen.

Symbols a i adsorbate concentration in adsorbent, kg/kg of carbon - a 0i monolayer capacity, kg/kg of carbon - b i kinetic parameter of theLangmuir equation - E j adsorption energy in thej-th layer - i i-th component (1 — water vapour, 2 — organic compound) - j j-th layer - m number of layers - n number of adsorbed components - p partial pressure, Pa - p* saturation partial pressure, Pa - p C water vapour partial pressure at begining of capillary condensation, Pa - surface coverage  相似文献   
102.
Summary Sulfonylureas are widely used for the treatment of non-insulin dependent diabetes mellitus. Glibenclamide belongs to the group of substituted arylsulfonylureas. Many representative of this group shows polymorphism. The purpose of this work was to investigate the thermal behaviour and compatibility between glibenclamide and some excipients using thermoanalytical techniques (TG-DTG/DSC). The thermal and isothermal kinetics data showed incompatibility between glibenclamide and magnesium stearate.  相似文献   
103.
The bond dissociation enthalpies (BDE) of several phenols containing electron-withdrawing substituents in the para position have been determined by means of the EPR radical equilibration technique. It has been found that CN, NO(2), CHO, COOR, and COOH induce an increase of the BDE value of the O-H bond, thus producing a worsening of the antioxidant activity of phenols, while Cl, Ph, and CH[double bond]CHPh show an opposite effect. The contributions of these substituents for the calculation of the BDE values in polysubstituted phenols by using the group additivity rule have also been derived. It is shown that this rule provides quite reliable predictions of bond strengths, so that the method can be conveniently used to estimate new data on substituted phenols.  相似文献   
104.
The preparation of two η6‐estra‐1, 3, 5(10), 6‐tetraene tricarbonylchromium complexes 4 and 6 are described. In both cases only one stereoisomer can be isolated, in contrast to other estrane‐tricarbonylchromium complexes, where complexations are non‐stereoselective. X‐ray crystal structural analysis of 4 discloses that only the more sterically hindered β‐facial isomer is formed. It is assumed that the 6, 7‐olefinic moiety exerts a directive influence on the complexation.  相似文献   
105.
The pseudo-halide 1, 2, 3, 4-thiatriazol-5-thiolate, in the anion and acid forms, undergoes photochemical decomposition with the formation of sulfur, nitrogen and the thiocyanate anion, with quantum yields (θ313) of 0.13 and 0.26 for the acid and anion forms, respectively.  相似文献   
106.
When food containing fat is treated by ionizing radiation, a group of 2-alkylcyclobutanones is formed. These components contain the same number of carbon atoms as their precursor fatty acids and the alkyl group is located in ring position 2. Thus, from palmitic acid 2-dodecylcyclobutanone is derived. To date, there is no evidence that the cyclobutanones occur in unirradiated food. Therefore, these components cannot be considered inherent to food, and for questions pertaining to risk assessment of irradiated food it would be advisable to determine the genotoxic and toxic potentials of cyclobutanones. Measurements of DNA damage in cells exposed to 2-dodecylcyclobutanone, employing the single cell microgel electrophoresis technique, have been carried out. In vitro experiments using rat and human colon cells indicate that 2-docylcyclobutanone in the concentration range of about 0.30 – 1.25 mg/ml induces DNA strand breaks in the cells. Simultaneously, a concentration related cytotoxic effect is observed as was determined by trypan blue exclusion. To which extent these in vitro findings are of relevancy for the in vivo human exposure situation needs to be investigated in further studies. In vivo tests in rats are in progress.  相似文献   
107.
Ab initio MP 2/4-31G ** calculations indicate that the most stable form of C3NH is bent and singlet and that the linear structure corresponds to a maximum. The effect of changing the CNH angle on the total energy is slight, but it is quite pronounced on the molecular polarity. The wider angle tends to increase the polarity of C3NH. MP 2/4-31G ** calculations predict a difference of polarity between linear and bent structures of 0.8 D.  相似文献   
108.
Zusammenfassung An praktischen Beispielen wurde gezeigt, in welcher Weise die Trennung organischer Verbindungen mittels Papierchromatographie erzielt werden kann. Man ist nicht auf einige bewährte Lösungsmittel systeme allein angewiesen, sondern kann von Fall zu Fall systematisch neue und geeignete Systeme benützen. Es hat sich bewährt, sich nach den elementaren Löslichkeitsregeln für organische Stoffe zu richten, unter der Voraussetzung, daß die zu chromatographierende Verbindung in der stationären Phase gut, in der mobilen Phase dagegen weniger löslich ist. Durch Änderung der stationären Phase (Wasser, nicht wäßriges, polares Lösungsmittel, nicht polares Lösungsmittel) oder der Polarität und Zusammensetzung der mobilen Phase kann man das Wandern der Flecke am Chromatogramm beeinflussen, beliebige RfWerte erhalten und in vielen Fällen auch eine beliebige Reihenfolge der Verbindungen am Chromatogramm erzielen.Da die Löslichkeit organischer Verbindungen von intermolekularen Kräften abhängig ist, erscheint das Problem im Zusammenhang mit strukturellen Einflüssen sehr kompliziert und muß für jeden Fall auf eigene Weise gelöst werden. Die Löslichkeitseigenschaften können weiter durch Benutzung reaktiver Lösungsmittel beeinflußt werden, die z. B. die Verbindungen in wasserlösliche Salze überführen können. Dabei ist an die möglichen Komplikationen, die bei ionisierbaren Verbindungen durch Dissoziation und Hydrolyse entstehen können, zu achten.Von den Hauptfaktoren, die eine Trennung ermöglichen können, seien die folgenden erwähnt: funktionelle Gruppen, ihre Anzahl, Polarität, gegenseitige Stellung, bzw. ihre Basizität oder Azidität, C-Atomanzahl in homologen Verbindungen, inter- und intramolekulare Wasserstoffbindungen, sterische Faktoren u. a. Es ist dann von der Art des gewählten Lösungsmittelsystems abhängig, welche der genannten Faktoren im Vordergrund stehen und welche beseitigt werden.Wenn die Löslichkeitsunterschiede der zu trennenden Stoffe zu gering sind, um gute Trennungen zu ermöglichen, ist es zweckmäßig, die Verbindungen in solche Derivate zu überführen, deren Strukturunterschiede größer sind.
Summary Practical examples are given to show how organic compounds can be separated by means of paper chromatography. The operator is not limited to tested solvent systems, but can use new suitable systems as the occasion demands. It has been found best to abide by the elementary rules of solubility of organic compounds, provided the compound to be chromatographed is quite soluble in the stationary phase but less soluble in the mobile phase. By altering the stationary phase (water, nonaqueous, polar solvent, non-polar solvent) or the polarity and composition of the mobile phase, the migration of the stains in the chromatogram can be influenced, selectedR f -values can be obtained, and in many cases it is also possible to secure a desired succession of the compounds on the chromatogram.Since the solubility of organic compounds depends on intermolecular forces, the problem in connection with structural influences appears very complicated and must be solved individually for each case. Moreover, the solubility characteristics can be affected by using reactive solvents; for instance, the compounds can be converted into water soluble salts. Under such circumstances, sight must not be lost of the complications which may arise because of the dissociation and hydrolysis of ionizable compounds. The following are among the chief factors, which may make a separation possible: functional groups, their number, polarity, relative position, their basicity or acidity, C-atom number in homologous compounds, inter- and intramolecular hydrogen bonds, steric factors, etc. It then depends on the type of solvent system selected, which of these factors are predominant and which can be neglected or eliminated.If the solubility differences are too slight to permit good separations, the compounds to be separated should, if possible, be converted into derivatives whose structural differences are more pronounced.

Résumé Des exemples pratiques montrent comment il est possible d'effectuer la séparation de combinaisons organiques par Chromatographie sur papier. Il n'est pas uniquement fait appel à des systèmes de solvants éprouvés mais, dans certains cas, de nouveaux systèmes appropriés sont systématiquement utilisés.Il s'est avéré satisfaisant de faire appel aux règles élémentaires de solubilité des substances organiques sous réserve que la combinaison à chromatographier soit suffisamment soluble dans la phase stationnaire et moins soluble dans la phase mobile. En faisant varier la phase stationnaire (eau, solvant non aqueux, solvant polaire, solvant non polaire) ou la polarité et la composition de la phase mobile, il est possible d'influencer la migration des taches du chromatogramme, d'obtenir des valeurs deR f désirées et, dans de nombreux cas, d'obtenir les combinaisons dans un ordre déterminé sur le chromatogramme.La solubilité des combinaisons organiques étant fonction des forces intermoléculaires il en résulte que le problème se complique considérablement dans la mesure où l'on considère les influences structurelles et que chaque cas particulier doit recevoir une solution qui lui est propre. Les propriétés de solubilité peuvent en outre être influencées par l'emploi de solvants réactifs qui peuvent transformer, par exemple les combinaisons en sels solubles dans l'eau. Il faut alors tenir compte des possibilités de complications qui peuvent apparaître par dissociation et hydrolyse des combinaisons ionisables.Parmi les principaux facteurs qui permettent une séparation, il convient de mentionner les suivants: les groupes fonctionnels, leur nombre, leur polarité, leur position relative, ou encore leur acidité ou leur basicité, le nombre d'atomes de carbone de combinaisons homologues, les liaisons hydrogène inter- et intramoléculaires, les facteurs stériques, etc. Suivant la nature du système solvant choisi pourront alors varier les facteurs dont l'effet est prépondérant et ceux dont l'effet est nul. Lorsque les différences de solubilité des substances à séparer sont trop faibles pour permettre des séparations satisfaisantes, il est commode de transformer les combinaisons en dérivés dont les différences de structure soient plus importantes.
  相似文献   
109.
We describe the development of photolabile protecting groups based on the 3,4,5-trimethoxyphenacyl group (TMP). Orthogonal safety-catches were created by introducing an acid-activatible dimethyl ketal (AA-TMP) and an oxidatively activatible 1,3-dithiane (OA-TMP) into the photolabile TMP group. We demonstrate the application of these protecting groups in light-directed synthesis of small molecule microarrays with diversity elements radially attached to a hydroxyproline scaffold.  相似文献   
110.
Chromium trioxide oxidation of 1-phenylisochroman-4-spiro-1′-cyclopentane (Ia) in acetic acid led to the expected 1-(2-benzoylphenyl)cyclopentanecarboxylic acid (IIa), while its 6,7-dimethoxy analogue Ib and 6,7-dimethoxy-1-phenylisochroman-4-spiro-4′-(1′-methyl)piperidine (Ic) under the same conditions gave a mixture of their related 1-hydroxy derivatives VIIIb and VIIIc and of the p-benzoquinones, 1-benzoyloxymethyl-1-(2,5-dioxo-4-methoxyphenyl)cyclopentane (IXb) and 1-benzoyloxymethyl-1-(2,5-dioxo-4-methoxyphenyl)-1-methylpiperidine (IXc). Cyclization of Ila with hydrazine or monomethylhydrazine led to the 5-spiro-substituted 1-phenyl-3,5-dihydro-4H-2,3-benzodiazepin-4-ones IIIa or XIa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号