首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   11篇
化学   80篇
晶体学   1篇
力学   1篇
数学   30篇
物理学   36篇
  2022年   3篇
  2021年   3篇
  2020年   10篇
  2019年   9篇
  2018年   4篇
  2017年   2篇
  2016年   13篇
  2015年   4篇
  2014年   4篇
  2013年   12篇
  2012年   13篇
  2011年   8篇
  2010年   9篇
  2009年   7篇
  2008年   6篇
  2007年   9篇
  2006年   6篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   4篇
排序方式: 共有148条查询结果,搜索用时 0 毫秒
111.
The reaction dynamics of the boron monoxide radical ((11)BO; X(2)Σ(+)) with ethylene (C(2)H(4); X(1)A(g)) were investigated at a nominal collision energy of 12.2 kJ mol(-1) employing the crossed molecular beam technique and supported by ab initio and statistical (RRKM) calculations. The reaction is governed by indirect scattering dynamics with the boron monoxide radical attacking the carbon-carbon double bond of the ethylene molecule without entrance barrier with the boron atom. This addition leads to a doublet radical intermediate (O(11)BH(2)CCH(2)), which either undergoes unimolecular decomposition through hydrogen atom emission from the C1 atom via a tight transition state located about 13 kJ mol(-1) above the separated products or isomerizes via a hydrogen shift to the O(11)BHCCH(3) radical, which also can lose a hydrogen atom from the C1 atom. Both processes lead eventually to the formation of the vinyl boron monoxide molecule (C(2)H(3)BO; X(1)A'). The overall reaction was determined to be exoergic by about 40 kJ mol(-1). The reaction dynamics are also compared to the isoelectronic ethylene (C(2)H(4); X(1)A(g)) - cyano radical (CN; X(2)Σ(+)) system studied earlier.  相似文献   
112.
Ternary Gd(5-x)Zr(x)Si(4) silicides were synthesized by arc melting of the constituent elements and subsequent heat treatments. The Gd(5-x)Zr(x)Si(4) phases adopt the orthorhombic Gd(5)Si(4)-type (space group Pnma) structure for x≤ 0.25 and the tetragonal Zr(5)Si(4)-type (space group P4(1)2(1)2) structure for x≥ 1.0, respectively. The samples with intermediate compositions contain two phases. Single-crystal X-ray diffraction reveals a preferential site occupancy for Zr on the three metal sites in the order of M3 > M2 > M1. Size arguments based on the local coordination environments suggest that the larger Gd atoms preferentially occupy the larger M1 site, while the smaller Zr atoms tend to occupy the smaller metal sites, M2 and M3. Tight-binding linear-muffin-tin orbital calculations illustrate a role of the metal-silicon bonds in the metal site occupation. An increase in the valence electron concentration through the Zr substitution weakens the Si-Si interactions but enhances the metal-silicon and metal-metal interactions. The Curie temperature of Gd(5-x)Zr(x)Si(4) decreases gradually with the increasing Zr content.  相似文献   
113.
Letters in Mathematical Physics - We construct the general solution of a class of Fuchsian systems of rank N as well as the associated isomonodromic tau functions in terms of semi-degenerate...  相似文献   
114.
The escalating food demand and loss to herbivores has led to increasing interest in using resistance-inducing microbes for pest control. Here, we evaluated whether root-inoculation with fungi that are otherwise known as entomopathogens improves tomato (Solanum lycopersicum) leaflets’ reaction to herbivory by Spodoptera exigua (beet armyworm) larvae using chlorophyll fluorescence imaging. Plants were inoculated with Metarhizium brunneum or Beauveria bassiana, and photosystem II reactions were evaluated before and after larval feeding. Before herbivory, the fraction of absorbed light energy used for photochemistry (ΦPSII) was lower in M. brunneum-inoculated than in control plants, but not in B. bassiana-inoculated plants. After herbivory, however, ΦPSII increased in the fungal-inoculated plants compared with that before herbivory, similar to the reaction of control plants. At the same time, the fraction of energy dissipated as heat (ΦNPQ) decreased in the inoculated plants, resulting in an increased fraction of nonregulated energy loss (ΦNO) in M. brunneum. This indicates an increased singlet oxygen (1O2) formation not detected in B. bassiana-inoculated plants, showing that the two entomopathogenic fungi differentially modulate the leaflets’ response to herbivory. Overall, our results show that M. brunneum inoculation had a negative effect on the photosynthetic efficiency before herbivory, while B. bassiana inoculation had no significant effect. However, S. exigua leaf biting activated the same compensatory PSII response mechanism in tomato plants of both fungal-inoculated treatments as in control plants.  相似文献   
115.
A scalable and efficient process for the preparation of 3-borylated pyrrolidines by 1,3-dipolar cycloaddition of N-benzyl azomethine ylide generated in situ has been developed. The optimized method included the use of LiF in DMSO at 110 °C and was suitable for α-mono-, α,β-di-, and α,β,β-trialkyl-, β,β-(hetera)cycloalkylidene-, CO2Et-, as well as most β-(het)aryl-substituted alkenyl boropinacolates. The 1,3-dipolar reaction proceeded on a multigram scale providing 3-borylated pyrrolidines with diverse substitution patterns (including fused and spirocyclic ones) in a diastereoselective manner. The Pd(OH)2-mediated N-debenzylation of pyrrolidine hydrochlorides was successfully performed to give the corresponding bifunctional building blocks on an up to 130 g scale, thus providing a substantial expansion of the synthetic and medicinal chemist's toolbox. Other reactions included the preparation of trifluoroborates, Zweifel-Aggarwal sp3-sp2 coupling, and oxidative deborylation as an example of C-heteroatom bond formation.  相似文献   
116.
117.
The motion of a suspension of erythrocytes (red blood cells, RBCs) in response to a high-frequency alternating current (AC) field in a microfluidic device is examined with parallel and orthogonal electrode configurations to delineate the various fundamental driving forces. Cell repulsion from the platinum electrodes due to electrode polarization interacting with cell membrane polarizations is observed to be the strongest force acting on the particles in the first few seconds of field application. We exploit this strong repulsion to concentrate the bioparticles between the microelectrodes to amplify multiparticle aggregation phenomenon and dielectrophoretic (DEP) manipulation in a small and well-characterized region within the microfluidic device. Secondary motions include RBC pearl chain formation along field lines due to particle polarization followed by classical dielectrophoretic motion of the chains across field lines to regions of weaker field. These are driven by far weaker dipole-dipole and field-dipole interactions than the preliminary electrode repulsions. RBC chain length and total aggregated cells are presented for a variety of AC frequencies and are significantly amplified by the electrode repulsion. Motion of particles away from the polarized electrode is found to be species- and age-sensitive and can stand by itself as a promising identification and separation mechanism. In a 0.1 S/m isotonic phosphate buffer saline medium, we observe the largest cell mobilities at an optimal frequency of approximately 1 MHz, corresponding to the inverse diffusion time across the double layer of the cell and across the electrode's polarized layer. This suggests that the dielectric responses of both particles and electrodes in the low MHz frequency range are mostly determined by normal electromigration of ions from the bulk to their interfaces. Sensitivity to RBC age and species suggests that the surface proteins and membrane ion channels can affect the capacitance of the interface to accommodate the ions from the bulk. Such surface ion accumulation and polarization mechanisms are different from the classical dielectric theories. The resonant frequency of electrode polarization at around 1 MHz falls between positive and negative dielectrophoretic resonant frequency peaks - suggesting that the double-layer polarization mechanism is a distinct and potentially important bioparticle manipulation tool.  相似文献   
118.
119.
Thermal lattice Boltzmann simulations are prone to severe numerical instabilities. While octagonal velocity lattices increase the range of temperatures that can be successfully simulated, the ranges are insufficient for many applications. Second order interpolation is required to correlate diagonal streaming to the square spatial grid. Here, the role of energy-dependent octagonal lattices is examined, an idea spawned from Gauss–Hermite quadratures. A nontrivial allocation scheme is now required to ensure moment conservation in connecting to the spatial grid. For the energy-dependent lattices, it is shown that there are no lower bounds to the temperature, thus allowing for higher Reynolds number simulations. Simulations are presented and compared to theory (viscosity and sound speed dependence on temperature) showing excellent agreement.  相似文献   
120.
The effect of the direction of the detected beam on the intensity of electron cyclotron emission (ECE) is studied. It is found that the combined effects of the strong dependence of the conversion efficiency of O mode at the plasma resonance on the direction of the incident wave and the partial screening of the beam waist by the vessel wall of the spherical tokamak MAST, can be responsible for the weakening of ECE for some frequencies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号