首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1564篇
  免费   55篇
  国内免费   1篇
化学   1250篇
晶体学   8篇
力学   37篇
数学   171篇
物理学   154篇
  2023年   22篇
  2022年   62篇
  2021年   71篇
  2020年   38篇
  2019年   41篇
  2018年   37篇
  2017年   37篇
  2016年   45篇
  2015年   57篇
  2014年   48篇
  2013年   97篇
  2012年   116篇
  2011年   123篇
  2010年   82篇
  2009年   78篇
  2008年   99篇
  2007年   111篇
  2006年   78篇
  2005年   74篇
  2004年   57篇
  2003年   47篇
  2002年   48篇
  2001年   13篇
  2000年   12篇
  1999年   13篇
  1998年   9篇
  1997年   6篇
  1996年   11篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1992年   5篇
  1991年   6篇
  1987年   2篇
  1984年   5篇
  1983年   2篇
  1982年   6篇
  1981年   2篇
  1979年   2篇
  1973年   2篇
  1965年   2篇
  1964年   3篇
  1963年   2篇
  1960年   3篇
  1959年   2篇
  1958年   3篇
  1955年   2篇
  1932年   2篇
  1929年   2篇
  1911年   2篇
排序方式: 共有1620条查询结果,搜索用时 15 毫秒
41.
Commercialized mouthwashes are generally expensive for the most financially vulnerable populations. Thus, several studies evaluate the antimicrobial potential of herbal products, such as essential oils, to reduce the activity of microorganisms in the mouth. The objective of this research was to carry out the chemical characterization and antibacterial activity of the essential oil of Piper mosenii (EOPm), providing data that enable the development of a low-cost mouthwash formulation aimed at vulnerable communities. The analysis of the antibacterial potential and modulator of bacterial resistance was verified by the microdilution method to determine the minimum inhibitory concentration-MIC. The chemical components were characterized by gas chromatography coupled to mass spectrometry, where 23 chemical constituents were detected, with α-pinene, being the major compound. The EOPm showed a MIC ≥ 1024 µg/mL for all bacterial strains used in the tests. When the EOPm modulating activity was evaluated together with chlorhexidine, mouthwash and antibiotics against bacterial resistance, the oil showed a significant synergistic effect, reducing the MIC of the products tested in combination, in percentages between 20.6% to 96.3%. Therefore, it is recommended to expand the tests with greater variation of EOPm concentration and the products used in this research, in addition to the evaluation of toxicity and in vivo tests, seeking the development of a possible formulation of mouthwash accessible to the vulnerable population.  相似文献   
42.
Autologous bone is the gold standard in regeneration processes. However, there is an endless search for alternative materials in bone regeneration. Xenografts can act as bone substitutes given the difficulty of obtaining bone tissue from patients and before the limitations in the availability of homologous tissue donors. Bone neoformation was studied in critical-size defects created in the parietal bone of 40 adult male Wistar rats, implanted with xenografts composed of particulate bovine hydroxyapatite (HA) and with blocks of bovine hydroxyapatite (HA) and Collagen, which introduces crystallinity to the materials. The Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated the carbonate and phosphate groups of the hydroxyapatite and the amide groups of the collagen structure, while the thermal transitions for HA and HA/collagen composites established mainly dehydration endothermal processes, which increased (from 79 °C to 83 °C) for F2 due to the collagen presence. The xenograft’s X-ray powder diffraction (XRD) analysis also revealed the bovine HA crystalline structure, with a prominent peak centered at 32°. We observed macroporosity and mesoporosity in the xenografts from the morphology studies with heterogeneous distribution. The two xenografts induced neoformation in defects of critical size. Histological, histochemical, and scanning electron microscopy (SEM) analyses were performed 30, 60, and 90 days after implantation. The empty defects showed signs of neoformation lower than 30% in the three periods, while the defects implanted with the material showed partial regeneration. InterOss Collagen material temporarily induced osteon formation during the healing process. The results presented here are promising for bone regeneration, demonstrating a beneficial impact in the biomedical field.  相似文献   
43.
This work studied the feasibility of using a novel microreactor based on torus geometry to carry out a sample pretreatment before its analysis by graphite furnace atomic absorption. The miniaturized retention of total arsenic was performed on the surface of a magnetic sorbent material consisting of 6 mg of magnetite (Fe3O4) confined in a very small space inside (20.1 µL) a polyacrylate device filling an internal lumen (inside space). Using this geometric design, a simulation theoretical study demonstrated a notable improvement in the analyte adsorption process on the solid extractant surface. Compared to single-layer geometries, the torus microreactor geometry brought on flow turbulence within the liquid along the curvatures inside the device channels, improving the efficiency of analyte–extractant contact and therefore leading to a high preconcentration factor. According to this design, the magnetic solid phase was held internally as a surface bed with the use of an 8 mm-diameter cylindric neodymium magnet, allowing the pass of a fixed volume of an arsenic aqueous standard solution. A preconcentration factor of up to 60 was found to reduce the typical “characteristic mass” (as sensitivity parameter) determined by direct measurement from 53.66 pg to 0.88 pg, showing an essential improvement in the arsenic signal sensitivity by absorption atomic spectrometry. This methodology emulates a miniaturized micro-solid-phase extraction system for flow-through water pretreatment samples in chemical analysis before coupling to techniques that employ reduced sample volumes, such as graphite furnace atomic absorption spectroscopy.  相似文献   
44.
Innovative technologies can transform what are now considered “waste streams” into feedstocks for a range of products. Indeed, the use of biomass as a source of biopolymers and chemicals currently has a consolidated economic dimension, with well-developed and regulated markets, in which the evaluation of the manufacturing processes relies on specific criteria such as purity and yield, and respects defined regulatory parameters for the process safety. In this context, ionic liquids and deep eutectic solvents have been proposed as environmentally friendly solvents for applications related to biomass waste valorization. This mini-review draws attention to some recent advancements in the use of a series of new-solvent technologies, with an emphasis on deep eutectic solvents (DESs) as key players in the development of new processes for biomass waste valorization. This work aims to highlight the role and importance of DESs in the following three strategic areas: chitin recovery from biomass and isolation of valuable chemicals and biofuels from biomass waste streams.  相似文献   
45.
Healthcare-associated infections (HAI), or nosocomial infections, are a global health and economic problem in developed and developing countries, particularly for immunocompromised patients in their intensive care units (ICUs) and surgical site hospital areas. Recurrent pathogens in HAIs prevail over antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. For this reason, natural antibacterial mechanisms are a viable alternative for HAI treatment. Natural fibers can inhibit bacterial growth, which can be considered a great advantage in these applications. Moreover, these fibers have been reported to be biocompatible and biodegradable, essential features for biomedical materials to avoid complications due to infections and significant immune responses. Consequently, tissue engineering, medical textiles, orthopedics, and dental implants, as well as cosmetics, are fields currently expanding the use of plant fibers. In this review, we will discuss the source of natural fibers with antimicrobial properties, antimicrobial mechanisms, and their biomedical applications.  相似文献   
46.
Fly ash (FA) and exhausted bed sands (sands wastes) that are generated in biomass burners for energy production are two of the wastes generated in the pulp and paper industry. The worldwide production of FA biomass is estimated at 10 million tons/year and is expected to increase. In this context, the present work aims to develop one-part alkali-activated materials with biomass FA (0–100 wt.% of the binder) and sands wastes (100 wt.% of the aggregate). FA from two different boilers, CA and CT, was characterized and the mortar’s properties, in the fresh and hardened conditions, were evaluated. Overall, the incorporation of FA decreases the compressive strength of the specimens. However, values higher than 30 MPa are reached with 50 wt.% of FA incorporation. For CA and CT, the compressive strength of mortars with 28 days of curing was 59.2 MPa (0 wt.%), 56.9 and 57.0 MPa (25 wt.%), 34.9 and 46.8 MPa (50 wt.%), 20.5 and 13.5 MPa (75 wt.%), and 9.2 and 0.2 MPa (100 wt.%), respectively. The other evaluated characteristics (density, water absorption, leached components and freeze–thaw resistance) showed no significant differences, except for the specimen with 100 wt.% of CA. Therefore, this work proved that one-part geopolymeric materials with up to 90 wt.% of pulp and paper industrial residues (FA and sand) can be produced, thus reducing the carbon footprint associated with the construction sector.  相似文献   
47.
Grumixama (Eugenia brasiliensis Lam.) is a native fruit of the Brazilian Atlantic Forest, belonging to the Myrtaceae family, which designatesthe most significant number of species with food potential. It stands out due to its phytochemical characteristics because of the presence of polyphenols and volatile organic compounds. Volatile compounds are substances released by foods that give off an aroma and influence flavor. Solid-phase microextraction is a technique that allows for low-cost, fast, and solvent-free extraction, has an affinity for numerous analytes, and is easily coupled to gas chromatography. The objectives of this work were to evaluate the efficiency of different fibers of SPME (solid-phase microextraction) in the extraction of volatile organic compounds from grumixama pulp; optimize a method for extraction time, temperature, and sample weight; and to determine the characteristic volatile profile of this fruit. For the extraction of volatile compounds, three fibers of different polarities were used: polar polyacrylate (PA) fibers, divinylbenzene/carboxyne/polydimethylsiloxane (DVB/CAR/PDMS) semipolar fibers, and polydimethylsiloxane/divinylbenzene (PDMS/DVB). Fourteen volatile organic compounds (VOCs) were identified by DVB/CAR/PDMS, six by PA, and seven by PDMS/DVB through solid-phase microextraction in the headspace mode (SPME-HS). Considering the total number of compounds identified, regardless of the fiber used, and the optimization of the method, Eugenia brasiliensis presented sesquiterpene fractions (85.7%, 83.3%, and 85.7% of total VOCs) higher than the monoterpene fractions (14.3%, 16.7%, and 14.3%) for DVB/CAR/PDMS, PA, and PDMS/DVB, respectively in its composition. In addition, it was possible to verify that the fiber DVB/CAR/PDMS presented a better efficiency due to the larger chromatographic area observed when the grumixama pulp was subjected to conditions of 75 °C, 2.0 g, and an adsorption time of 20 min.  相似文献   
48.
As a result of high false positive rates in virtual screening campaigns, prospective hits must be synthesised for validation. When done manually, this is a time consuming and laborious process. Large “on-demand” virtual libraries (>7 × 1012 members), suitable for preparation using capsule-based automated synthesis and commercial building blocks, were evaluated to determine their structural novelty. One sub-library, constructed from iSnAP capsules, aldehydes and amines, contains unique scaffolds with drug-like physicochemical properties. Virtual screening hits from this iSnAP library were prepared in an automated fashion for evaluation against Aedes aegypti and Phytophthora infestans. In comparison to manual workflows, this approach provided a 10-fold improvement in user efficiency. A streamlined method of relative stereochemical assignment was also devised to augment the rapid synthesis. User efficiency was further improved to 100-fold by downscaling and parallelising capsule-based chemistry on 96-well plates equipped with filter bases. This work demonstrates that automated synthesis consoles can enable the rapid and reliable preparation of attractive virtual screening hits from large virtual libraries.

A compact and operationally simple automation technology can prepare virtual screening hits from a large on-demand library of drug-like molecules.  相似文献   
49.
The drugs delivery system in the treatment of diseases has advantages such as reduced toxicity, increased availability of the drug, etc. Therefore, studies of the supramolecular interactions between local anesthetics (LAs) butamben (BTB) or ropivacaine (RVC) complexed with 2-hydroxypropyl-β-cyclodextrin (HP-βCD) and carried in Stealth liposomal (SL) are performed. 1H-NMR nuclear magnetic resonance (DOSY and STD) were used as the main tools. The displacements observed in the 1H-NMR presented the complexion between LAs and HP-βCD. The diffusion coefficients of free BTB and RVC were 7.70 × 10−10 m2 s−1 and 4.07 × 10−10 m2 s−1, and in the complex with HP-βCD were 1.90 × 10−10 m2 s−1 and 3.64 × 10−10 m2 s−1, respectively, which indicate a strong interaction between the BTB molecule and HP-βCD (98.3% molar fraction and Ka = 72.279 L/mol). With STD-NMR, the encapsulation of the BTB/HP-βCD and RVC/HP-βCD in SL vesicles was proven. Beyond the saturation transfer to the LAs, there is the magnetization transfer to the hydrogens of HP-βCD. BTB and RVC have already been studied in normal liposome systems; however, little is known of their behavior in SL.  相似文献   
50.
Body temperature is usually employed in clinical practice by strict binary thresholding, aiming to classify patients as having fever or not. In the last years, other approaches based on the continuous analysis of body temperature time series have emerged. These are not only based on absolute thresholds but also on patterns and temporal dynamics of these time series, thus providing promising tools for early diagnosis. The present study applies three time series entropy calculation methods (Slope Entropy, Approximate Entropy, and Sample Entropy) to body temperature records of patients with bacterial infections and other causes of fever in search of possible differences that could be exploited for automatic classification. In the comparative analysis, Slope Entropy proved to be a stable and robust method that could bring higher sensitivity to the realm of entropy tools applied in this context of clinical thermometry. This method was able to find statistically significant differences between the two classes analyzed in all experiments, with sensitivity and specificity above 70% in most cases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号