首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
化学   16篇
力学   1篇
数学   2篇
物理学   19篇
  2021年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2008年   3篇
  2007年   1篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1995年   5篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1979年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
11.
We have extended the utility of NMR as a technique to probe porous media structure over length scales of approximately 100-2000 microm by using the spin 1/2 noble gas 129Xe imbibed into the system's pore space. Such length scales are much greater than can be probed with NMR diffusion studies of water-saturated porous media. We utilized Pulsed Gradient Spin Echo NMR measurements of the time-dependent diffusion coefficient, D(t), of the xenon gas filling the pore space to study further the measurements of both the pore surface-area-to-volume ratio, S/V(p), and the tortuosity (pore connectivity) of the medium. In uniform-size glass bead packs, we observed D(t) decreasing with increasing t, reaching an observed asymptote of approximately 0.62-0.65D(0), that could be measured over diffusion distances extending over multiple bead diameters. Measurements of D(t)/D(0) at differing gas pressures showed this tortuosity limit was not affected by changing the characteristic diffusion length of the spins during the diffusion encoding gradient pulse. This was not the case at the short time limit, where D(t)/D(0) was noticeably affected by the gas pressure in the sample. Increasing the gas pressure, and hence reducing D(0) and the diffusion during the gradient pulse served to reduce the previously observed deviation of D(t)/D(0) from the S/V(p) relation. The Pade approximation is used to interpolate between the long and short time limits in D(t). While the short time D(t) points lay above the interpolation line in the case of small beads, due to diffusion during the gradient pulse on the order of the pore size, it was also noted that the experimental D(t) data fell below the Pade line in the case of large beads, most likely due to finite size effects.  相似文献   
12.
Storage temperature is one of the most important factors affecting wine aging. Along with bottling parameters (type of stopper, SO2 level and dissolved O2 in wine), they determine how fast wine will evolve, reach its optimum and decline in sensory quality. At the same time, lowering of the SO2 level in wine has been a hot topic in recent years. In the current work, we investigated how Riesling wine evolved on the molecular level in warm (~25 °C) and cool (~15 °C) conditions depending on the SO2 level in the wine (low, medium and high), flushing of the bottle’s headspace with CO2 and three types of stoppers (Diam 30, Diam 30 origin and Diam 5) with different OIR levels (0.8–1.3 mg) and OTR levels (0.3–0.4 mg/year). It was demonstrated that the evolution of primary and secondary aromas, wine color and low molecular weight sulfur compounds (LMWSCs) during the two years of aging mainly depended on the storage temperature. Variation in the SO2 level and CO2 in the headspace affected mostly certain LMWSCs (H2S, MeSH) and β-damascenone. New aspects of C13-norisprenoids and monoterpenoids behavior in Riesling wine with different levels of SO2 and O2 were discussed. All three types of stoppers showed very close wine preservation properties during the two years of storage. The sensory analysis revealed that, after only six months, the warm stored wines with a low SO2 level were more oxidized and different from the samples with medium and high SO2 levels. A similar tendency was also observed for the cool stored samples.  相似文献   
13.
The perhydropentasilanes (H(3)Si)(4)Si and Si(5)H(10) were chlorinated with SnCl(4) to give chlorohydropentasilanes without destruction of the Si-Si backbone. Tetrachloroneopentasilane (ClH(2)Si)(4)Si (2) was prepared in high yield from (H(3)Si)(4)Si and 3.5 equiv of SnCl(4), while Si(5)H(10) and an equimolar amount of SnCl(4) afforded a mixture of ~60% of ClSi(5)H(9) (1) with polychlorinated cyclopentasilanes and unreacted starting material, which could not be separated by distillation. The selective monochlorination of Si(5)H(10) was achieved starting from MesSi(5)Cl(9) (3; Mes = 2,4,6-trimethylphenyl) or TBDMP-Si(5)Cl(9) (4; TBDMP = 4-tert-butyl-2,6-dimethylphenyl). 3 or 4 was successfully hydrogenated with LiAlH(4) to give MesSi(5)H(9) (6) or TBDMP-Si(5)H(9) (7), which finally gave 1 along with aryl-H and Si(5)H(10) after treatment with an excess of liquid anhydrous HCl. All compounds were characterized by standard spectroscopic techniques. For Si-H derivatives, the coupled (29)Si NMR spectra were analyzed in detail to obtain an unequivocal structural assignment. The molecular structures of 2-4 were further confirmed by X-ray crystallography.  相似文献   
14.
15.
A structural failure problem was solved using an integrated and iterative program of testing and analysis. The steps taken in solving the problem were: analytical calculations; operational testing; qualifications of analytical results; problem identification; design of corrective action; and confirmatory testing.  相似文献   
16.
17.
18.
19.
We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Padé approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Padé interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Padé length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号