首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   1篇
化学   40篇
力学   1篇
数学   6篇
物理学   9篇
  2022年   1篇
  2018年   1篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   5篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   4篇
  2005年   9篇
  2003年   1篇
  2002年   3篇
  1999年   1篇
  1997年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
排序方式: 共有56条查询结果,搜索用时 209 毫秒
21.
Abstract

Polybutadiene diol chains were end-capped, using two highly fluorinated monochlorosilanes, specifically di(4-fluorophenyl)-methylchlorosilane and di[3,5-bis(trifluoromethyl) phenyl]methyl-chlorosilane. The resulting chains, with one and three fluorine atoms at their ends, respectively, were characterized using contact angle measurements, X-ray photoelectron spectroscopy (XPS), and Time-of-flight secondary ionization mass spectroscopy (TOFSIMS). The observed lowered surface tensions and results from the chemical analyses were consistent with migration of the fluorosilicon end groups to the polymer surfaces.

  相似文献   
22.
Alkynyl aziridines can be obtained from the catalytic asymmetric aziridination (AZ reaction) of alkynyl imines with diazo compounds in high yields and high asymmetric inductions mediated by a chiral boroxinate or BOROX catalyst. In contrast to the AZ reaction with aryl‐ and alkyl‐substituted imines, alkynyl imines react to give cis‐substituted aziridines with both diazo esters and diazo acetamides. Remarkably, however, the two diazo compounds give different enantiomers of the cis‐aziridine from the same enantiomer of the catalyst. Theoretical considerations of the possible transition states for the enantiogenic step reveal that the switch in enantiomers results from a switch from Si‐face to Re‐face addition to the imine, which in turn is related to a switch from reaction with an E‐imine in the former and a Z‐isomer of the imine in the latter.  相似文献   
23.
24.
The ultraviolet spectra of α-carboxy and α-carbomethoxystilbenes obtained in the Claisen/Stobbe reaction of methyl phenyl acetate and aromatic aldehydes is reported. All these compounds possess the characteristiccis stilbene spectral curve. Electronic effects of substituents in the acid show characteristic bathochromic shifts. A fewtrans α-carboxystilbenes have been prepared and their spectra have the characteristictrans stilbene pattern.  相似文献   
25.
26.
Simple methods for producing continuous inorganic coatings on fibers have application in multiple technologies. The application of bioinspired strategies for the formation of particulate inorganic materials has been widely investigated and provides routes to inorganic materials under environmentally benign conditions. In this work, we describe the formation of stable and continuous inorganic coatings on glass fibers via the polymerization of silica in the presence of biopolymers. The formation of both organic and inorganic coatings was investigated via X-ray photoelectron spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray analysis. The simple route to silica coatings presented herein could be interesting for the development of functional hybrid fibrous materials suitable for catalytic and sensor applications, given the homogeneous nature of the silica films and the benign conditions employed for film formation.  相似文献   
27.
To understand the roles of hydroxyl-containing biomolecules in biosilicification, theoretical and experimental studies of silica formation utilizing biological and model organic additives have been undertaken. However, the role of hydroxyl functionalized biomolecules in silica formation is still not fully understood. To address this problem, we performed a systematic in vitro study of silica formation in the presence of two proteins rich in hydroxyl-containing amino acids (native sericin proteins extracted from Bombyx mori and a recombinant sericin precursor peptide) and a range of small alkanediols. The data obtained suggest the following hypotheses for the role of hydroxyl-containing organic molecules in silica formation. In the first case, hydroxyl-containing organic molecules are not at all involved chemically in the formation of silica. Instead, they may be only assisting in rendering stability and solubility to the organic molecules found occluded in silica. The second possibility is that if we assume that hydroxyl-containing organic molecules affect silica formation, then the environments of silicic acid polymerization could be highly deficient in water to increase the effects of hydroxyl functional groups of proteins in silica formation. These results and their implications are discussed in the context of biosilicification and biomineralization.  相似文献   
28.
The biogeochemical silicon cycle is the focus for many researchers studying the dissolution of silicon species from quartz, amorphous, and biogenic silica. Furthermore, the precipitation of biogenic silica by diatoms, radiolarian, sponges, and plants is also a popular focus for research. The ornate silica structures created by these species has attracted interest from biomaterial scientists and biochemists who have studied mineral formation in an attempt to understand how biogenic silica is formed, often in the presence of proteins and long chain polyamines. This article is at the interface of these seemingly distinct research areas. Here we investigate the effect of a range of amines in globally undersaturated silicon environments. Results are presented on the effect of amine-containing molecules on the formation of silica from undersaturated solutions of orthosilicic acid and globally undersaturated silicon environments. We sought to address two questions: can silica be precipitated/harvested from undersaturated solutions, and can we identify the silicon species that are most active in silica formation? We demonstrate that none of the bioinspired additives investigated here (e.g., poly(allylamine hydrochloride), pentaethylenehexamine, and propylamines) have any influence on orthosilicic acid at undersaturated concentrations. However, under globally undersaturated silicon concentrations, small molecules and polymers containing amine groups were able to interact with oligomers of silicic acid to either generate aggregated materials that can be isolated from solution or increase rates of oligomer dissolution back to orthosilicic acid. Additional outcomes of this study include an extended understanding of how polyelectrolytes and small molecules can promote and/or inhibit silica dissolution and a new method to explore how (bio)organic molecules interact with a forming mineral phase.  相似文献   
29.
Conductive tubes: Self-assembled nanotubes of a bacteriochlorophyll derivative are reminiscent of natural chlorosomal light-harvesting assemblies. After deposition on a substrate that consists of a non-conductive silicon oxide surface (see picture, brown) and contacting the chlorin nanowires to a conductive polymer (yellow), they show exceptional charge-transport properties.  相似文献   
30.
Control over selective recognition of biomolecules on inorganic nanoparticles is a major challenge for the synthesis of new catalysts, functional carriers for therapeutics, and assembly of renewable biobased materials. We found low sequence similarity among sequences of peptides strongly attracted to amorphous silica nanoparticles of various size (15-450 nm) using combinatorial phage display methods. Characterization of the surface by acid base titrations and zeta potential measurements revealed that the acidity of the silica particles increased with larger particle size, corresponding to between 5% and 20% ionization of silanol groups at pH 7. The wide range of surface ionization results in the attraction of increasingly basic peptides to increasingly acidic nanoparticles, along with major changes in the aqueous interfacial layer as seen in molecular dynamics simulation. We identified the mechanism of peptide adsorption using binding assays, zeta potential measurements, IR spectra, and molecular simulations of the purified peptides (without phage) in contact with uniformly sized silica particles. Positively charged peptides are strongly attracted to anionic silica surfaces by ion pairing of protonated N-termini, Lys side chains, and Arg side chains with negatively charged siloxide groups. Further, attraction of the peptides to the surface involves hydrogen bonds between polar groups in the peptide with silanol and siloxide groups on the silica surface, as well as ion-dipole, dipole-dipole, and van-der-Waals interactions. Electrostatic attraction between peptides and particle surfaces is supported by neutralization of zeta potentials, an inverse correlation between the required peptide concentration for measurable adsorption and the peptide pI, and proximity of cationic groups to the surface in the computation. The importance of hydrogen bonds and polar interactions is supported by adsorption of noncationic peptides containing Ser, His, and Asp residues, including the formation of multilayers. We also demonstrate tuning of interfacial interactions using mutant peptides with an excellent correlation between adsorption measurements, zeta potentials, computed adsorption energies, and the proposed binding mechanism. Follow-on questions about the relation between peptide adsorption on silica nanoparticles and mineralization of silica from peptide-stabilized precursors are raised.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号