The misuse of insulin for performance enhancement in sport or as toxic agent has frequently been reported in the past. In contrast to synthetic insulin analogues, the administration of recombinant human insulin is hardly recognized by mass spectrometry. The present study was designed to uncover the misuse of recombinant human insulin for doping control purposes as well as for forensic applications. It is hypothesized that an altered metabolite profile of circulating insulin prevails after subcutaneous administration due to exposure of insulin to epidermal proteases. 相似文献
An enantioselective total synthesis of the polycyclic diterpene (+)‐chatancin, a potent PAF antagonist, is reported. Proceeding in seven steps from dihydrofarnesal, this synthetic route was designed to circumvent macrocyclization‐based strategies to complex, cyclized cembranoids. The described synthesis requires only six chromatographic purifications, is high yielding, and avoids protecting‐group manipulations. An X‐ray crystal structure of this fragile marine natural product was obtained. 相似文献
Hetero-dimeric magnetic nanoparticles of the type Au-Fe3O4 have been synthesised from separately prepared, differently shaped (spheres and cubes), monodisperse nanoparticles. This synthesis was achieved by the following steps: (a) Mono-functionalising each type of nanoparticles with aldehyde functional groups through a solid support approach, where nanoparticle decorated silica nanoparticles were fabricated as an intermediate step; (b) Derivatising the functional faces with complementary functionalities (e.g. amines and carboxylic acids); (c) Dimerising the two types of particles via amide bond formation. The resulting hetero-dimers were characterised by high-resolution TEM, Fourier transform IR spectroscopy and other appropriate methods.
Graphical Abstract Nano-LEGO: Assembling two types of separately prepared nanoparticles into a hetero-dimer is the first step towards complex nano-architectures. This study shows a solid support approach to combine a gold and a magnetite nanocrystal.
The DNA structure is an ideal building block for the construction of functional nano-objects. In this direction, metal coordinating base pairs (ligandosides) are an appealing tool for the future specific functionalization of such nano-objects. We present here a study, in which we combine the metal ion coordinating pyrazole ligandoside with the interstrand crosslinking salen ligandoside system. We show that both ligandosides, when combined, are able to create stable multi-copper ion complexing DNA double helix structures in a cooperative fashion. 相似文献