首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6990篇
  免费   269篇
  国内免费   46篇
化学   5030篇
晶体学   24篇
力学   224篇
数学   1026篇
物理学   1001篇
  2023年   71篇
  2022年   70篇
  2021年   129篇
  2020年   121篇
  2019年   150篇
  2018年   97篇
  2017年   93篇
  2016年   211篇
  2015年   177篇
  2014年   216篇
  2013年   408篇
  2012年   495篇
  2011年   529篇
  2010年   292篇
  2009年   263篇
  2008年   444篇
  2007年   457篇
  2006年   411篇
  2005年   384篇
  2004年   360篇
  2003年   325篇
  2002年   255篇
  2001年   96篇
  2000年   88篇
  1999年   72篇
  1998年   63篇
  1997年   63篇
  1996年   87篇
  1995年   55篇
  1994年   49篇
  1993年   36篇
  1992年   39篇
  1991年   41篇
  1990年   40篇
  1989年   32篇
  1988年   21篇
  1987年   18篇
  1986年   23篇
  1985年   35篇
  1984年   43篇
  1983年   36篇
  1982年   39篇
  1981年   34篇
  1980年   40篇
  1979年   29篇
  1978年   31篇
  1977年   37篇
  1976年   31篇
  1975年   30篇
  1973年   19篇
排序方式: 共有7305条查询结果,搜索用时 15 毫秒
971.
We report the use of time-resolved Faraday rotation to induce and probe the polarization of nuclear spins within a set of quantum wells with varying background electron density. The electron density was controlled over a broad range by making use of structures of mixed type-I/type-II GaAs/AlAs quantum wells that spatially separate photoexcited electron–hole pairs. We find that the optically detected nuclear magnetic field decreases quasi-monotonically with increasing electron density. The likely factors responsible for this behavior are increased electron spin-lattice relaxation, increased electron spin delocalization, and dilution of the electron spin polarization.  相似文献   
972.
We have studied the collective properties of two-dimensional (2D) excitons immersed within a quantum well which contains 2D excitons and a two-dimensional electron gas (2DEG). We have also analyzed the excitations for a system of 2D dipole excitons with spatially separated electrons and holes in a pair of quantum wells (CQWs) when one of the wells contains a 2DEG. Calculations of the superfluid density and the Kosterlitz–Thouless (K–T) phase transition temperature for the 2DEG-exciton system in a quantum well have shown that the K–T transition temperature increase with increasing exciton density and that it might be possible to have fast long-range transport of excitons. The superfluid density and the K–T transition temperature for dipole excitons in CQWs in the presence of a 2DEG in one of the wells increases with increasing inter-well separation.  相似文献   
973.
We present a detailed study of the reaction-diffusion patterns observed in the thiourea-iodate-sulfite (TuIS) reaction, operated in open one-side-fed reactors. Besides spatial bistability and spatio-temporal oscillatory dynamics, this proton autoactivated reaction shows stationary patterns, as a result of two back-to-back Turing bifurcations, in the presence of a low-mobility proton binding agent (sodium polyacrylate). This is the third aqueous solution system to produce stationary patterns and the second to do this through a Turing bifurcation. The stationary pattern forming capacities of the reaction are explored through a systematic design method, which is applicable to other bistable and oscillatory reactions. The spatio-temporal dynamics of this reaction is compared with that of the previous ferrocyanide-iodate-sulfite mixed Landolt system.  相似文献   
974.
In this paper, we study the backward–forward algorithm as a splitting method to solve structured monotone inclusions, and convex minimization problems in Hilbert spaces. It has a natural link with the forward–backward algorithm and has the same computational complexity, since it involves the same basic blocks, but organized differently. Surprisingly enough, this kind of iteration arises when studying the time discretization of the regularized Newton method for maximally monotone operators. First, we show that these two methods enjoy remarkable involutive relations, which go far beyond the evident inversion of the order in which the forward and backward steps are applied. Next, we establish several convergence properties for both methods, some of which were unknown even for the forward–backward algorithm. This brings further insight into this well-known scheme. Finally, we specialize our results to structured convex minimization problems, the gradient-projection algorithms, and give a numerical illustration of theoretical interest.  相似文献   
975.
Graphite and related sp2 carbons are ubiquitous electrode materials with particular promise for use in e.g., energy storage and desalination devices, but very little is known about the properties of the carbon–electrolyte double layer at technologically relevant concentrations. Here, the (electrified) graphite–NaCl(aq) interface was examined using constant chemical potential molecular dynamics (CμMD) simulations; this approach avoids ion depletion (due to surface adsorption) and maintains a constant concentration, electroneutral bulk solution beyond the surface. Specific Na+ adsorption at the graphite basal surface causes charging of the interface in the absence of an applied potential. At moderate bulk concentrations, this leads to accumulation of counter-ions in a diffuse layer to balance the effective surface charge, consistent with established models of the electrical double layer. Beyond ∼0.6 M, however, a combination of over-screening and ion crowding in the double layer results in alternating compact layers of charge density perpendicular to the interface. The transition to this regime is marked by an increasing double layer size and anomalous negative shifts to the potential of zero charge with incremental changes to the bulk concentration. Our observations are supported by changes to the position of the differential capacitance minimum measured by electrochemical impedance spectroscopy, and are explained in terms of the screening behaviour and asymmetric ion adsorption. Furthermore, a striking level of agreement between the differential capacitance from solution evaluated in simulations and measured in experiments allows us to critically assess electrochemical capacitance measurements which have previously been considered to report simply on the density of states of the graphite material at the potential of zero charge. Our work shows that the solution side of the double layer provides the more dominant contribution to the overall measured capacitance. Finally, ion crowding at the highest concentrations (beyond ∼5 M) leads to the formation of liquid-like NaCl clusters confined to highly non-ideal regions of the double layer, where ion diffusion is up to five times slower than in the bulk. The implications of changes to the speciation of ions on reactive events in the double layer are discussed.

CμMD reveals multi-layer electrolyte screening in the double layer beyond 0.6 M, which affects ion activities, speciation and mobility; asymmetric charge screening explains concentration dependent changes to electrochemical properties.  相似文献   
976.
In this paper, we study an inference problem in generalized Ornstein–Uhlenbeck processes with an unknown change-point when the drift parameter is suspected to satisfy a linear restriction. The testing problem studied generalizes a very recent problem about testing the existence of a change-point. To this end, we derive the asymptotic properties of the unrestricted estimator (UE) and the restricted estimator for the drift parameters, and we construct some shrinkage estimators (SEs). Further, we derive a test for testing the uncertain restriction and establish its asymptotic power. Moreover, we derive the asymptotic distributional risk of the proposed estimators and we prove that SEs dominate the UE. Finally, we present some numerical results which confirm the consistency of the proposed test as well as the superiority of the SEs over UE.  相似文献   
977.
When we interpret modal ? as the limit point operator of a topological space, the Gödel-Löb modal system GL defines the class Scat of scattered spaces. We give a partition of Scat into α-slices S α , where α ranges over all ordinals. This provides topological completeness and definability results for extensions of GL. In particular, we axiomatize the modal logic of each ordinal α, thus obtaining a simple proof of the Abashidze–Blass theorem. On the other hand, when we interpret ? as closure in a topological space, the Grzegorczyk modal system Grz defines the class HI of hereditarily irresolvable spaces. We also give a partition of HI into α-slices H α , where α ranges over all ordinals. For a subset A of a hereditarily irresolvable space X and an ordinal α, we introduce the α-representation of A, give an axiomatization of the α-representation of A, and characterize H α in terms of α-representations. We prove that ${X \in {\bf H}_{1}}When we interpret modal ◊ as the limit point operator of a topological space, the G?del-L?b modal system GL defines the class Scat of scattered spaces. We give a partition of Scat into α-slices S α , where α ranges over all ordinals. This provides topological completeness and definability results for extensions of GL. In particular, we axiomatize the modal logic of each ordinal α, thus obtaining a simple proof of the Abashidze–Blass theorem. On the other hand, when we interpret ◊ as closure in a topological space, the Grzegorczyk modal system Grz defines the class HI of hereditarily irresolvable spaces. We also give a partition of HI into α-slices H α , where α ranges over all ordinals. For a subset A of a hereditarily irresolvable space X and an ordinal α, we introduce the α-representation of A, give an axiomatization of the α-representation of A, and characterize H α in terms of α-representations. We prove that X ? H1{X \in {\bf H}_{1}} iff X is submaximal. For a positive integer n, we generalize the notion of a submaximal space to that of an n-submaximal space, and prove that X ? Hn{X \in {\bf H}_{n}} iff X is n-submaximal. This provides topological completeness and definability results for extensions of Grz. We show that the two partitions are related to each other as follows. For a successor ordinal α = β + n, with β a limit ordinal and n a positive integer, we have Ha ?Scat = Sb+2n-1 èSb+2n{{\bf H}_{\alpha} \cap {\bf Scat} = {\bf S}_{\beta+2n-1} \cup {\bf S}_{\beta+2n}} , and for a limit ordinal α, we have Ha ?Scat = Sa{{\bf H}_{\alpha} \cap {\bf Scat} = {\bf S}_{\alpha}} . As a result, we obtain full and faithful translations of ordinal complete extensions of Grz into ordinal complete extensions of GL, thus generalizing the Kuznetsov–Goldblatt–Boolos theorem.  相似文献   
978.
A combination of high-resolution electrical and electrochemical imaging techniques, in conjunction with cathodoluminescence (CL), is used to investigate the electrochemical behavior of oxygen-terminated highly doped polycrystalline boron doped diamond (BDD). The BDD has a dopant density approximately 5 x 10(20) atoms cm(-3), grain size ca. 5-40 microm, and thickness 500 microm. CL imaging demonstrates that boron uptake is nonuniform across the surface of BDD, and conducting atomic force microscopy (C-AFM) highlights how this impacts on the local conductivity. While C-AFM shows no evidence for enhanced grain boundary conductivity, two characteristic conductivity domains are found with resistances of ca. 100 kOmega and ca. 50 MOmega. With the use of scanning electrochemical microscopy (SECM), local heterogeneities are also observed in the electroactivity of the BDD surface, consistent with the two different types of conducting regions. Local currents of the magnitude expected for metal-like behavior are observed in some regions, suggesting degenerative doping of the grains (supported by CL studies). In other regions, slower electron transfer is apparent. However, even for the reduction of Ru(NH(3))(6)(3+), which occurs at potentials far negative of the flat-band potential for oxygen-terminated BDD, all areas of the surface show some electroactivity. This study highlights that the spatially heterogeneous conductivity and corresponding electroactivity of BDD are readily resolved using a combination of C-AFM, SECM, and CL.  相似文献   
979.
[reaction: see text] As a contribution to bioorganometallic chemistry, an enantioselective synthesis of novel carbocyclic nucleoside analogues with a ferroceno-cyclopentene backbone was developed. Diastereoselective cuprate 1,4-addition or Mukaiyama-Michael addition to a planar-chiral enoate (ethyl (E)-2-[2-methoxycarbonyl-ferrocenyl]-acrylate) allowed for the introduction of different side chains (RCH(2)). Other important steps include a Dieckmann cyclization and the attachment of the nucleobase (NB) in an iron-assisted S(N)1 reaction. Some of the target compounds were shown to exhibit significant apoptosis-inducing activity (LD(50) = 10-20 microM) against tumor cells.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号