首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6530篇
  免费   260篇
  国内免费   45篇
化学   4815篇
晶体学   24篇
力学   212篇
综合类   1篇
数学   882篇
物理学   901篇
  2023年   62篇
  2022年   68篇
  2021年   126篇
  2020年   120篇
  2019年   149篇
  2018年   91篇
  2017年   84篇
  2016年   197篇
  2015年   165篇
  2014年   206篇
  2013年   371篇
  2012年   467篇
  2011年   501篇
  2010年   271篇
  2009年   239篇
  2008年   430篇
  2007年   442篇
  2006年   396篇
  2005年   367篇
  2004年   339篇
  2003年   308篇
  2002年   250篇
  2001年   84篇
  2000年   82篇
  1999年   68篇
  1998年   59篇
  1997年   60篇
  1996年   76篇
  1995年   49篇
  1994年   36篇
  1993年   27篇
  1992年   32篇
  1991年   33篇
  1990年   35篇
  1989年   27篇
  1988年   18篇
  1986年   24篇
  1985年   32篇
  1984年   41篇
  1983年   29篇
  1982年   40篇
  1981年   29篇
  1980年   38篇
  1979年   27篇
  1978年   33篇
  1977年   39篇
  1976年   28篇
  1975年   30篇
  1974年   16篇
  1973年   18篇
排序方式: 共有6835条查询结果,搜索用时 62 毫秒
101.
We report investigations of hair surface potential under wetting at the nanometric scale by atomic force microscopy (AFM). Surface potential imaging was used to characterize the electrostatic properties of the hair samples. We found that the surface potential noticeably increases along the edges of the cuticles. These results are correlated with wetting behavior of different liquids performed using AFM in noncontact mode.  相似文献   
102.
Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies. In this study, we examine the impact of O-glycosylation on the binding selectivity of a model Family 1 carbohydrate-binding module (CBM), which has been shown to be one of the primary sub-domains responsible for non-productive lignin binding in multi-modular cellulases. Specifically, we examine the relationship between glycan structure and the binding specificity of the CBM to cellulose and lignin substrates. We find that the glycosylation pattern of the CBM exhibits a strong influence on the binding affinity and the selectivity between both cellulose and lignin. In addition, the large set of binding data collected allows us to examine the relationship between binding affinity and the correlation in motion between pairs of glycosylation sites. Our results suggest that glycoforms displaying highly correlated motion in their glycosylation sites tend to bind cellulose with high affinity and lignin with low affinity. Taken together, this work helps lay the groundwork for future exploitation of glycoengineering as a tool to improve the performance of industrial enzymes.

Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies.

The cell walls of terrestrial plants primarily comprise the polysaccharides cellulose, hemicellulose, and pectin, as well as the heterogeneous aromatic polymer, lignin. In nature, carbohydrates derived from plant polysaccharides provide a massive carbon and energy source for biomass-degrading fungi, bacteria, and archaea, which together are the primary organisms that recycle plant matter and are a critical component of the global carbon cycle. Across the various environments in which these microbes break down lignocellulose, a few known enzymatic and chemical systems have evolved to deconstruct polysaccharides to soluble sugars.1–6 These natural systems are, in several cases, being evaluated for industrial use to produce sugars for further conversion into renewable biofuels and chemicals.From an industrial perspective, overcoming biomass recalcitrance to cost-effectively produce soluble intermediates, including sugars for further upgrading remains the main challenge in biomass conversion. Lignin, the evolution of which in planta provided a significant advantage for terrestrial plants to mitigate microbial attack, is now widely recognized as a primary cause of biomass recalcitrance.7 Chemical and/or biological processing scenarios of lignocellulose have been evaluated8 and several approaches have been scaled to industrial biorefineries to date. Many biomass conversion technologies overcome recalcitrance by partially or wholly removing lignin from biomass using thermochemical pretreatment or fractionation. This approach enables easier polysaccharide access for carbohydrate-active enzymes and/or microbes. There are however, several biomass deconstruction approaches that employ enzymes or microbes with whole, unpretreated biomass.9,10 In most realistic biomass conversion scenarios wherein enzymes or microbes are used to depolymerize polysaccharides, native or residual lignin remains.11,12 It is important to note that lignin can bind and sequester carbohydrate-active enzymes, which in turn can affect conversion performance.13Therefore, efforts aimed at improving cellulose binding selectivity relative to lignin have emerged as major thrusts in cellulase studies.14–25 Multiple reports in the past a few years have made exciting new contributions to our collective understanding of how fungal glycoside hydrolases, which are among the most well-characterized cellulolytic enzymes given their importance to cellulosic biofuels production, bind to lignin from various pretreatments.15,17 Taken together, these studies have demonstrated that the Family 1 carbohydrate-binding modules (CBMs) often found in fungal cellulases are the most relevant sub-domains for non-productive binding to lignin,15,17,20,26 likely due to the hydrophobic face of these CBMs that is known to be also responsible for cellulose binding (Fig. 1).27Open in a separate windowFig. 1Model of glycosylated CBM binding the surface of a cellulose crystal. Glycans are shown in green with oxygen atoms in red, tyrosines known to be critical to binding shown in purple, and disulfide bonds Cys8–Cys25 and Cys19–Cys35 in yellow.Furthermore, several studies have been published recently using protein engineering of Family 1 CBMs to improve CBM binding selectivity to cellulose with respect to lignin. Of particular note, Strobel et al. screened a large library of point mutations in both the Family 1 CBM and the linker connecting the catalytic domain (CD) and CBM.21,22 These studies demonstrated that several mutations in the CBM and one in the linker led to improved cellulose binding selectivity compared to lignin. The emerging picture is that the CBM-cellulose interaction, which occurs mainly as a result of stacking between the flat, hydrophobic CBM face (which is decorated with aromatic residues) and the hydrophobic crystal face of cellulose I, is also likely the main driving force in the CBM-lignin interaction given the strong potential for aromatic–aromatic and hydrophobic interactions.Alongside amino acid changes, modification of O-glycosylation has recently emerged as a potential tool in engineering fungal CBMs, which Harrison et al. demonstrated to be O-glycosylated.28–31 In particular, we have revealed that the O-mannosylation of a Family 1 CBM of Trichoderma reesei cellobiohydrolase I (TrCel7A) can lead to significant enhancements in the binding affinity towards bacterial microcrystalline cellulose (BMCC).30,32,33 This observation, together with the fact that glycans have the potential to form both hydrophilic and hydrophobic interactions with other molecules, led us to hypothesize that glycosylation may have a unique role in the binding selectivity of Family 1 CBMs to cellulose relative to lignin and as such, glycoengineering may be exploited to improve the industrial performance of these enzymes. To test this hypothesis, in the present study, we systematically probed the effects of glycosylation on CBM binding affinity for a variety of lignocellulose-derived cellulose and lignin substrates and investigated routes to computationally predict the binding properties of different glycosylated CBMs.  相似文献   
103.
Finely ground and pretreated iron substrates known as "zerovalent iron" or "Fe0" are used as reductants in the environmental remediation of halogenated hydrocarbons, and the composition of their surfaces significantly affects their reactivity. Samples of unannealed and annealed (heat-treated under H2/N2) zerovalent iron were analyzed using X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Surface concentration of the iron and of the impurities observed by XPS and AES, carbon, chlorine, sulfur, and oxygen, were measured before and after soaking in trichloroethylene (TCE) and in water saturated with TCE (H2O/TCE) to simulate chlorocarbon remediation conditions. Samples pretreated by annealing at high temperature under H2 contained less iron carbide. The carbide contaminant was evident in both iron and carbon XPS spectra, with binding energies of 709.0 and 283.3 eV for the Fe 2p3/2 and C 1s, respectively. The annealed Fe0 surface also contained more sulfur. The carbide concentration was essentially unchanged by TCE and H2O/TCE exposure, whereas the sulfur decreased in proportion to chlorine adsorption following the dechlorination reaction. While oxygen concentration is initially lower on the annealed substrate surface, it rapidly increased during the model TCE remediative treatment process and thus does not represent a significant effect of the annealing process on surface reactivity.  相似文献   
104.
Pb8FeIIFeF24 is triclinic: a = 20.118(3) Å, b = 5.597(1) Å, c = 9.440(2) Å, α = 89.75(2)°, β = 105.79(2)°, α = 89.38(2)°, Z = 2. The structure is solved in the unconventional space group C1 , from X-ray single crystal data using 1 641 independent reflections (R = 0.048, Rw = 0.051). It is built up from the stacking of two subnetworks along the a axis: fluorite-like [Pb8F10]n6n+ layers and infinite dimetallic [FeIIFeF14]n6n? double-chains of corner-sharing octahedra running along the b axis.  相似文献   
105.

Probability densities that are not uniquely determined by their moments are said to be “moment-indeterminate,” or “M-indeterminate.” Determining whether or not a density is M-indeterminate, or how to generate an M-indeterminate density, is a challenging problem with a long history. Quantum mechanics is inherently probabilistic, yet the way in which probability densities are obtained is dramatically different in comparison with standard probability theory, involving complex wave functions and operators, among other aspects. Nevertheless, the end results are standard probabilistic quantities, such as expectation values, moments and probability density functions. We show that the quantum mechanics procedure to obtain densities leads to a simple method to generate an infinite number of M-indeterminate densities. Different self-adjoint operators can lead to new classes of M-indeterminate densities. Depending on the operator, the method can produce densities that are of the Stieltjes class or new formulations that are not of the Stieltjes class. As such, the method complements and extends existing approaches and opens up new avenues for further development. The method applies to continuous and discrete probability densities. A number of examples are given.

  相似文献   
106.
Summary. A coupled semilinear elliptic problem modelling an irreversible, isothermal chemical reaction is introduced, and discretised using the usual piecewise linear Galerkin finite element approximation. An interesting feature of the problem is that a reaction order of less than one gives rise to a "dead core" region. Initially, one reactant is assumed to be acting as a catalyst and is kept constant. It is shown that error bounds previously obtained for a scheme involving numerical integration can be improved upon by considering a quadratic regularisation of the nonlinear term. This technique is then applied to the full coupled problem, and optimal and error bounds are proved in the absence of quadrature. For a scheme involving numerical integration, bounds similar to those obtained for the catalyst problem are shown to hold. Received May 25, 1993 / Revised version received July 5, 1994  相似文献   
107.
Conformations of cyclopropyl methyl ketone have been studied using ab initio methods in an effort to quantify the effects of conjugative overlap between the cyclopropane ring and an adjacent ketone carbonyl. Results were comparable with previous experimental and theoretical studies. Cyclopropyl methyl ketone exhibits a global energy minimum in the s-cis conformer and a local energy minimum near the s-trans conformer. The potential energy curve obtained was used to derive torsion parameters which were employed in molecular mechanics studies of the conformations of the set of bicyclo[m.1.0]alkan-2-ones having larger ring sizes from five- to 16-membered. Similar conformations for the cyclopropyl ketone substructure are observed for all the medium and large ring systems examined. Possible synthetic ramifications of local conformational anchoring by this functional group array are discussed.  相似文献   
108.
A new inisurf (acting as surfactant and initiator) molecule for ring-opening metathesis polymerization (ROMP) was synthesized and used in aqueous solution in order to control the size and shape of polymer nodules grown from liposomes. Nodules were observed to grow in size with conversion of monomer, and depending on the monomer used, they adopted either a spherical or comet-like shape. Here, we investigate polymer production from a liposome surface. We use a hydrophobic derivative of the Grubbs catalyst positioned at the liposome surface to allow for ROMP of monomers dissolved in the aqueous outer phase. We obtain nodules of polymer that can grow up to tens of micrometers, unveiling new efficient possibilities of polymerization from a membrane in an aqueous solution.  相似文献   
109.
110.
Enzymatically digested oligosaccharides of kappa-, iota- and hybrid iota/nu-carrageenans were analysed using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry in the negative-ion mode. nor-Harmane was used as matrix. Depending on the stock concentration and the laser intensity applied, the oligosaccharides exhibited losses of sulphate units (neutralised by the Na+ ion, and thus non-stable), leaving the primary backbone structure in most cases with only the deprotonated sulphate groups (carrying the negative charge, stable). This meant that kappa- and iota-oligosaccharides could not be easily distinguished from one another since they share the same primary backbone structure. However, for the hybrid iota/nu-oligosaccharides the primary backbone structure could be identified since the nu-carrageenan repeating unit differs from that of the kappa/iota-carrageenan unit. For all types of oligosaccharides, the results indicated cleavage of an anhydrogalactose unit from the non-reducing end. Specifically, for the hybrid oligosaccharides of iota/nu-carrageenans, this type of fragmentation means that the nu-carrageenan unit is not positioned on the non-reducing end of the hybrid oligosaccharides. Dehydration reactions, and exchange reactions of Na+ with K+ and Ca2+, were also observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号