首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   11篇
  国内免费   5篇
化学   157篇
力学   6篇
数学   7篇
物理学   17篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   8篇
  2020年   11篇
  2019年   21篇
  2018年   14篇
  2017年   9篇
  2016年   15篇
  2015年   6篇
  2014年   17篇
  2013年   11篇
  2012年   20篇
  2011年   10篇
  2010年   6篇
  2009年   11篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1995年   1篇
排序方式: 共有187条查询结果,搜索用时 46 毫秒
141.
Thermal cracking of kerosene for producing ethylene and propylene has been studied in an experimental setup. A set of experiments were designed using Response Surface Design (Box Behnken) method. In these experiments, the coil outlet temperature (COT), residence time and steam ratio varied from 795 °C, 0.13 s and 0.6 to 838 °C, 0.27 s and 1.0, respectively. Obtained maximum ethylene and propylene yield in these experiments were 32 and 16.9 wt.%, respectively. In next step of studies, we tried to develop an applicable kinetic model to predict yield distribution of products of the kerosene thermal cracking. Therefore, a reaction mechanism is generated on the basis of major reactions classes in the pyrolysis and feed compounds using some simplification assumptions in the model. This semi-mechanistic kinetic model contains 172 reactions, 22 molecular and 29 radical species. A sensitivity analysis was done on kinetic model and controlling reactions identified. An objective function was defined and used to tune the model with experimental data. Finally, the calculated model results were compared with the experimental data. Scatter diagrams showed good agreement between model and experimental data.  相似文献   
142.
Oxathioacetalyzation of carbonyl compounds with 2-mercaptoethanol and deprotection of the obtained 1,3-oxathiolanes is easily performed in the presence of silica sulfuric acid (SSA). All reactions were performed under mild and completely heterogeneous reaction conditions in good to high yields.  相似文献   
143.
The gas-phase ozonolysis reaction of methylbutenol through the Criegee mechanism is investigated. The initial reaction leads to a primary ozonide (POZ) formation with barriers in the range of 10–28 kJ mol−1. The formation of 2-hydroxy-2-methyl-propanal (HMP) and formaldehyde-oxide is more favorable, by 10 kJ mol−1, than the syn-CI and formaldehyde. The unimolecular dissociation of the more stable syn-CI via 1,5-H transfer into an epoxide is more favored than the epoxide and 3O2 formation. The ester channel led to the formation of the acetone and formic acid favorably from the anti-CI. The hydration of the anti-CI with H2O and (H2O)2 is significantly barrierless with a higher plausibility to the latter, and thus they may lead to the formation of peroxides and ultimately OH radicals, as well as airborne particulate matter. Reaction of anti-CI with water dimers enhances its atmospheric reactivity by a factor of 28 in reference to water monomers.  相似文献   
144.
A low‐energy collision induced dissociation (CID) (low‐energy CID) approach that can determine both activation energy and activation entropy has been used to evaluate gas‐phase binding energies of host‐guest (H‐G) complexes of a heteroditopic hemicryptophane cage host (Zn (II)@1) with a series of biologically relevant guests. In order to use this approach, preliminary calibration of the effective temperature of ions undergoing resonance excitation is required. This was accomplished by employing blackbody infrared radiative dissociation (BIRD) which allows direct measurement of activation parameters. Activation energies and pre‐exponential factors were evaluated for more than 10 H‐G complexes via the use of low‐energy CID. The relatively long residence time of the ions inside the linear ion trap (maximum of 60 s) allowed the study of dissociations with rates below 1 s?1. This possibility, along with the large size of the investigated ions, ensures the fulfilment of rapid energy exchange (REX) conditions and, as a consequence, accurate application of the Arrhenius equation. Compared with the BIRD technique, low‐energy CID allows access to higher effective temperatures, thereby permitting one to probe more endothermic decomposition pathways. Based on the measured activation parameters, guests bearing a phosphate (―OPO32?) functional group were found to bind more strongly with the encapsulating cage than those having a sulfonate (―SO3?) group; however, the latter ones make stronger bonds than those with a carboxylate (―CO2?) group. In addition, it was observed that the presence of trimethylammonium (―N(CH3)3+) or phenyl groups in the guest's structure improves the strength of H‐G interactions. The use of this technique is very straightforward, and it does not require any instrumental modifications. Thus, it can be applied to other H‐G chemistry studies where comparison of bond dissociation energies is of paramount importance.  相似文献   
145.
Relative rate constants for the gas-phase reactions of Cl-atom with thirteen atmospherically interesting alkanes (C2? C8) have been determined at 296 ± 2 K based on GC/FID measurements of their relative decays in the UV (λ ≥ 300 nm) photolysis of mixtures containing Cl2 and the entire series of the selected alkanes in the mtorr range in 750 torr of N2. The following absolute rate constants (in units of 10?10 cm3 molecule?1 s?1) have been derived from the relative rate constants combined with the value of 1.94 × 10?10 cm3 molecule?1 s?1 for the Cl + n-butane reaction: ethane (0.57 ± 0.05); propane (1.27 ± 0.02); 2-methyl propane (1.30 ± 0.01), 2-methyl butane ((1.96 ± 0.02)), n-pentane (2.50 ± 0.02); 2,3-dimethyl butane (2.00 ± 0.06); 2-methyl pentane (2.58 ± 0.08); n-hexane (3.05 ± 0.04); 2-methyl hexane (3.12 ± 0.04); n-heptane (3.65 ± 0.06); 2,2,4-trimethyl pentane (2.25 ± 0.08); and n-octane (4.09 ± 0.12). The uncertainties indicated are two least-squares standard deviations (2σ). These rate constants are compared with literature values and their applicability to Arctic tropospheric conditions is discussed. © 1995 John Wiley & Sons, Inc.  相似文献   
146.
A new and sensitive precolumn derivatisation with dabsyl chloride was developed for the analysis of melamine in water samples by high-performance liquid chromatography (HPLC) with visible detection. Derivatisation with dabsyl chloride leads to improving sensitivity and hydrophobicity of melamine. Under optimum conditions of derivatisation and microextraction, the method yielded a linear calibration curve ranging from 10 to 2000 µg L?1 with a determination coefficient (R2) of 0.9952. Limit of detection (LOD) and limit of quantification (LOQ) were 2.0 and 6.0 µg L?1, respectively. The relative standard deviation per cent (RSD%) for intraday and inter-day extraction and determination at 20 and 200 µg L?1 levels of melamine was less than 8.2% (n = 6). Finally, the proposed method was successfully applied for the determination of melamine in different water samples and satisfactory results were obtained (relative recovery ≥91%).  相似文献   
147.
In the present work, the applicability of some of the recently proposed and modern double‐hybrid (DH) models and other density functional theory (DFT) approximations has been analyzed for a difficult test, the order of stability in low‐energy isomers of water nanoclusters. In particular, we aim to systematically investigate for these functionals the role played by several factors such as dispersion correction, integrand functions upon which the DHs are based, and different spin scaling for the perturbative term in DH calculations of the relative energies for various isomers of water nanoclusters (H2O)20. From the obtained results, the superior performance of DHs with respect to the functionals from previous rungs is confirmed. It is shown that the dispersion corrected DHs perform better than noncorrected counterparts. Plus, the DH models based on cubic integrand (CI) and quadratic integrand (QI) functions are nearly equivalent in performance. We also find that using only contributions of electron pairs with opposite spin for the perturbative correlation part through scaled opposite spin scheme does not represent a significant improvement on accuracy of the results. Putting all the results together, the dispersion corrected parameterized DHs and parameter‐free DH models involving CI and QI functions outperform other approximations for relative energies of water 20‐mers. Altogether, predicting the correct order of the stability in water nanoclusters may be considered as another Achilles' heel in DFT calculations, although more analyses in this context are still needed. © 2016 Wiley Periodicals, Inc.  相似文献   
148.
A series of well-defined, air- and moisture-stable (NHC)Pd(allyl)Cl (NHC = N-heterocyclic carbene) complexes has been used in several catalytic reactions: Suzuki-Miyaura cross-coupling, catalytic dehalogenation of aryl halides, and aryl amination. The scope of the three processes using various substrates was examined. A general system involving the use of (IPr)Pd(allyl)Cl as catalyst and NaO(t)Bu as base has proven to be highly active for the Suzuki-Miyaura cross-coupling of activated and unactivated aryl chlorides and bromides, for the catalytic dehalogenation of aryl chlorides, and for the catalytic aryl amination of aryl triflates. All reactions proceed in short reaction times and at mild temperatures. The system has also proven to be compatible with the microwave-assisted Suzuki-Miyaura cross-coupling and catalytic dehalogenation processes, affording yields similar to those of the conventionally heated analogous reactions.  相似文献   
149.
In this study, the kinetics and mechanisms of thermal degradation of Poly Vinyl Chloride (PVC) composites reinforced with class-F fly ash are studied experimentally and numerically using Flynn–Wall model. The addition of fly ash to the polymer matrix results in a decrease in the primary degradation temperature and an increase in the secondary degradation temperature. The metal oxides in the fly ash act as acid absorbers, which results in the destabilization of PVC during its dehydrochlorination process. However, they also react with the chlorine free radicals, which prevents the formation of HCl during degradation. In addition, it is observed that calcium and iron oxides, present in fly ash, are more reactive to the chlorine radicals rather than the silicon and aluminum oxides. The effect of fly ash chemical composition on the degradation of PVC composites was studied by comparing the thermal properties of composites containing two different classes of fly ashes, class-F and class-C, at similar levels. Thermal stability of the composites is found to be dependent on the chemical composition of fly ash. Higher dehydrochlorination rate is observed in the case of composites filled with class-F fly ash than those reinforced with class-C fly ash.  相似文献   
150.
Mononitrosyl and dinitrosyl iron species, such as {FeNO}7, {FeNO}8 and {Fe(NO)2}9, have been proposed to play pivotal roles in the nitrosylation processes of nonheme iron centers in biological systems. Despite their importance, it has been difficult to capture and characterize them in the same scaffold of either native enzymes or their synthetic analogs due to the distinct structural requirements of the three species, using redox reagents compatible with biomolecules under physiological conditions. Here, we report the realization of stepwise nitrosylation of a mononuclear nonheme iron site in an engineered azurin under such conditions. Through tuning the number of nitric oxide equivalents and reaction time, controlled formation of {FeNO}7 and {Fe(NO)2}9 species was achieved, and the elusive {FeNO}8 species was inferred by EPR spectroscopy and observed by Mössbauer spectroscopy, with complemental evidence for the conversion of {FeNO}7 to {Fe(NO)2}9 species by UV-Vis, resonance Raman and FT-IR spectroscopies. The entire pathway of the nitrosylation process, Fe(ii) → {FeNO}7 → {FeNO}8 → {Fe(NO)2}9, has been elucidated within the same protein scaffold based on spectroscopic characterization and DFT calculations. These results not only enhance the understanding of the dinitrosyl iron complex formation process, but also shed light on the physiological roles of nitric oxide signaling mediated by nonheme iron proteins.

Stepwise nitrosylation from Fe(ii) to {FeNO}7, {FeNO}8 and then to {Fe(NO)2}9 is reported for the first time in the same protein scaffold, providing deeper understanding of the detailed mechanism of dinitrosyl iron complex formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号