首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   10篇
  国内免费   3篇
化学   168篇
力学   20篇
数学   7篇
物理学   13篇
  2023年   3篇
  2022年   9篇
  2021年   5篇
  2020年   7篇
  2019年   8篇
  2018年   9篇
  2017年   8篇
  2016年   18篇
  2015年   11篇
  2014年   10篇
  2013年   11篇
  2012年   9篇
  2011年   12篇
  2010年   13篇
  2009年   13篇
  2008年   28篇
  2007年   16篇
  2006年   7篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
排序方式: 共有208条查询结果,搜索用时 31 毫秒
21.
22.
Journal of Solid State Electrochemistry - In this study, new nanocomposites were fabricated based on NiO, multi-walled carbon nanotube (MWCNT), and sodium dodecyl sulfate (SDS). Next, they were...  相似文献   
23.
Structural Chemistry - The molecular mechanism of the cycloaddition reactions of 2H-azirine with 1-methoxybutadiene and cyclohexadiene has been studied at the M06-2X/cc-pVDZ level of theory....  相似文献   
24.
Research on Chemical Intermediates - This article presents an ultrasound-assisted dispersive magnetic solid-phase extraction method (USA-DMSPE) to preconcentration Cd(II) and Pb(II) simultaneously....  相似文献   
25.
Fe3O4–Schiff base of Cu(II) is found to be a recyclable and heterogeneous catalyst for the rapid and efficient synthesis of various 2,3‐dihydroquinazolin‐4(1H)‐one derivatives from the two‐component condensation of 2‐aminobenzamide and an aldehyde. This reaction is simple, green and cost‐effective. Separation and recycling can also be easily done by magnetic decantation of the Fe3O4 nanoparticles with an external magnet. The prepared catalyst was characterized using thermogravimetry, Fourier transform infrared spectroscopy, vibrating sample magnetometry, inductively coupled plasma analysis, X‐ray diffraction and scanning electron microscopy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
26.
Electrode potential of 6-(2,3-dihydro-1,3-dioxo-2-phenyl-1H-inden-2-yl)-2,3-dihydroxybenzaldehyde (DPDB) in methanol have been calculated theoretically. For the achievement of this task, the density functional theory (B3LYP/6-31G(d)) was employed with the inclusion of the entropic and thermochemical corrections to yield the free energies of the redox reactions. The electrode potential was also obtained experimentally by means of an electrochemical technique (cyclic voltammetry). The geometric parameters, the vibrational frequency values and the UV spectrum of DPDB and 2-(2,3-dihydro-1,3-dioxo-2-phenyl-1H-inden-2-yl)-5,6-dioxocyclohexa-1,3-dienecarbaldehyde (DPDD is the oxidized form of DPDB), were computed using the same methods. The calculated IR spectrum of DPDB, used for the assignment of the IR frequencies, was observed in the experimental FT-IR spectrum. The correlation between the theoretical and experimental DPDB vibrational frequencies was 0.996. This agreement mutually verified the accuracy of the experimental method and the validity of the applied mathematical model.  相似文献   
27.
This research presents calculations and computation of two anticoagulant derivatives electrode potentials in methanol. For this purpose, the ab initio molecular orbital calculations (HF) and density functional theory (DFT) together with the 6-31G(d) basis set were utilized. The calculated values were compared with the experimental values obtained by linear sweep voltammetry. The observed and the calculated changes in the reduction potential of the anticoagulant derivatives differed from those of the reference compound (catechol), being less than 20 mV. In this way, a method was provided, by which the reduction potentials of the related molecules could be predicted very accurately. Actually, the resulting data illustrated that the method was likely to be useful for the prediction of biomolecules electrode potentials in different aprotic solvents. The bond lengths, bond angles and dipole moment of the studied compounds were calculated in two different solvents and the solvent effects were discussed.  相似文献   
28.
This research represents a novel detection method of acetone level in the exhaled breath samples (RH=88 %) based on polypyrrole/tungsten oxide (PPy/WO3) nanocomposite sensor. The PPy/WO3 sensor was fabricated by the deposition of nanocomposite on/between interdigitated electrodes (IDEs) through electrospray coating and was then characterized by FE-SEM imaging. In this detection method, the coulometric signal of the sensor was calculated using Fast Fourier Continuous Cyclic Voltammetry (FFTCCV), where cyclic voltammetry (CV) was applied to the sensor in the defined potential rang and then charge changes of the sensor was obtained by integration of the current in all scanned potential ranges. FFTCCV method enhances the sensitivity of the sensor when exposed to the gas mixtures containing acetone. In addition to its fast coulometric response time (≤5 s) in the two linear ranges of 0.7–2.8 ppm and 2.8–28.2 ppm (R2=0.99), FFTCCV method provides the low detection limit of 70 ppb, and high sensitivity toward acetone at the optimum values of the parameters. The fabricated sensor showed great selectivity toward acetone when exposed to humid air and some exhaled gas like carbon dioxide, ammonia, methanol, ethanol and alkyl amines. The results were very satisfying as the sensor was capable to detect different acetone levels in human exhaled breath as non-invasive diagnosis of diabetes with a good correlation (R2≃0.9) to the routine blood sugar test taken by different commercial glucometers results.  相似文献   
29.
In this work a novel method for the determination of Vitamin B6 in flow-injection systems has been developed. The fast Fourier transform continuous cyclic voltammetry (FFTCV) at gold microelectrode in flowing solution system was used for determination of Vitamin B6. This method is rapid, simple and highly sensitive procedures allowing the determination of Vitamin B6 in pharmaceutical analysis. The effects of various parameters on the sensitivity of the method were investigated. The best performance was obtained with the pH value of 2, scan rate value of 30 V/s, accumulation potential of 200 mV and accumulation time of 0.3 s. The proposed method has some advantages over other reported methods such as, no need for the removal of oxygen from the test solution, a sub-nanomolar detection limit, and finally the method is fast enough for the determination of any such compound, in a wide variety of chromatographic methods. To obtain a sensitive determination, the integration range of currents was set for all the potential scan ranges, including oxidation and reduction of the Au surface electrode, while performing the measurements. The potential waveform, consisting of the potential steps for cleaning, accumulation and potential ramp of analyte, was applied on an Au disk microelectrode (12.5 μm in radius) in a continuous way. The detection limit of the method for Vitamin B6 was 2.8 pg/ml. The relative standard deviation of the method at 2.1% was 8 runs. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 2, pp. 173–181. The text was submitted by the authors in English.  相似文献   
30.
In this work a novel method for the fast monitoring of lidocaine in flow-injection systems has been developed. The fast Fourier transform continuous cyclic voltammetry (FFTCV) at gold microelectrode in flowing solution system was used for determination of lidocaine in its pharmaceutical formulation. The presented technique was very simple, precise, accurate, time saving and economical, compared with all of the previously reported methods. The recommended technique demonstrated some advantages over other reported methods. Firstly, there was no need for the oxygen removal from the test solution. Secondly, a picomolar detection limit was achieved, and additionally, the method was fast enough for the determination of any such compound, in a wide variety of chromatographic methods. The method was linear across the concentration range of 240-1.1 × 105 pg mL−1 (r = 0.996) with a limit of detection and quantitation 117.3 and 240 pg mL−1, respectively. As a conclusion this system offers the requisite accuracy, sensitivity, precision and selectivity to assay lidocaine in injections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号