首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   10篇
  国内免费   3篇
化学   168篇
力学   20篇
数学   7篇
物理学   13篇
  2023年   3篇
  2022年   9篇
  2021年   5篇
  2020年   7篇
  2019年   8篇
  2018年   9篇
  2017年   8篇
  2016年   18篇
  2015年   11篇
  2014年   10篇
  2013年   11篇
  2012年   9篇
  2011年   12篇
  2010年   13篇
  2009年   13篇
  2008年   28篇
  2007年   16篇
  2006年   7篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
排序方式: 共有208条查询结果,搜索用时 31 毫秒
181.
For the first time, a nanocomposite of poly(vinylidene fluoride)/cellulose nanocrystal (PVDF/CNC) is developed as a piezoelectric energy harvester. This is implemented through electrospinning of PVDF solutions containing different levels of CNC loading, i.e., 0, 1, 3 and 5 % with respect to PVDF weight. Analytical techniques including DSC, FTIR and WAXD are conducted to monitor the polymorphism evolution within electrospun nanocomposites as the CNC content is varied. The results imply that CNCs at the optimum concentration (3 and 5 %) can effectively nucleate β crystalline phases. The nucleation of α crystalline phases is also prevented when CNCs are present within the structure of PVDF electrospun fibers. These changes in polymorphism give PVDF/CNC nanocomposites enhanced piezoelectric characteristics compared to pure PVDF nanofibers. We have demonstrated that the developed nanocomposites can charge a 33-μF capacitor over 6 V and light up a commercial LED for more than 30 s. It is envisaged that the PVDF/CNC nanocomposites provide the opportunity for the development of efficient electrical generators as self-powering devices to charge portable electronics.  相似文献   
182.
The supply chain network is a complex nonlinear system that may have a chaotic behavior. This network involves multiple entities that cooperate to meet customers demand and control network inventory. Although there is a large body of research on measurement of chaos in the supply chain, no proper method has been proposed to control its chaotic behavior. Moreover, the dynamic equations used in the supply chain ignore many factors that affect this chaotic behavior. This paper offers a more comprehensive modeling, analysis, and control of chaotic behavior in the supply chain. A supply chain network with a centralized decision-making structure is modeled. This model has a control center that determines the order of entities and controls their inventories based on customer demand. There is a time-varying delay in the supply chain network, which is equal to the maximum delay between entities. Robust control method with linear matrix inequality technique is used to control the chaotic behavior. Using this technique, decision parameters are determined in such a way as to stabilize network behavior.  相似文献   
183.
A hydrogen peroxide initiated sol-gel process involving molybdenum transformation in the presence of dopamine (Dopa) hydrochloride excess produced the metastable precipitate composed of polydopamine (PDopa) spheres coated with Dopa preintercalated molybdenum oxide, (Dopa)xMoOy@PDopa. The hydrothermal treatment (HT) of the (Dopa)xMoOy@PDopa precursor resulted in the simultaneous carbonization of Dopa and molybdenum reduction generating MoO2 nanoplatelets distributed and confined on the surface of the Dopa-derived carbon matrix (HT-MoO2/C). The consecutive annealing (An) of the HT-MoO2/C sample at 600 °C under Ar atmosphere led to the formation of MoO2 with increased Mo oxidation state and improved structural stability (AnHT-MoO2/C). Annealing had also further facilitated interaction between the molybdenum-derived and Dopa-derived components resulting in the modification of the carbon matrix confirmed by Raman spectroscopy. Morphology of both materials is best described as Dopa-derived carbon spheres decorated with MoO2 nanoplatelets. These integrated metal oxide and carbon structures were tested as electrodes for lithium-ion batteries in the potential window that corresponds to the intercalation mechanism of charge storage. The AnHT-MoO2/C electrode showed enhanced electrochemical activity, with an initial specific discharge capacity of 260 mAh/g and capacity retention of 67% after 50 cycles, compared to the HT-MoO2/C electrode which exhibited an initial specific discharge capacity of 235 mAh g?1 and capacity retention of 47% after 50 cycles. The rate capability experiments revealed that the capacity of 93 mAh/g and 120 mAh/g was delivered by the HT-MoO2/C and AnHT-MoO2/C electrodes, respectively, when the current density was increased to 100 mA/g. The improved specific capacity, electrochemical stability, and rate capability achieved after annealing were attributed to higher crystallinity of MoO2, increased oxidation state of Mo, and formation of the tighter MoO2/carbon contact accompanied by the annealing assisted interaction between MoO2 and Dopa-derived carbon.  相似文献   
184.
185.
Ganjali MR  Norouzi P  Ghorbani M  Sepehri A 《Talanta》2005,66(5):1225-1233
This work introduce an easy and fast continuous cyclic voltammetric technique for the propose monitoring of ultra trace amounts of salbutamol in a flow–injection system. The potential waveform, which consisted of the potential steps for cleaning, stripping and potential ramp, was continuously applied on an Au disk microelectrode (with a radius of 12.5 μm). The detection method we propose has some advantages, the greatest of which are: (1) removing oxygen from the analyte solution is no longer necessary, and (2) it is a very fast and appropriate technique for the determination of the drug compound in a wide variety of chromatographic analysis methods. The detection limit for salbutamol was 2.0 × 10−9 M. The relative standard deviation (R.S.D.) of the proposed technique at 10 ng/mL was 3.5% for 10 runs. The effects of pH of eluent, accumulation potential, sweep rate, and accumulation time on the sensitivity of the method for the determination of the salbutamol were investigated. The proposed method was applied to the determination of salbutamol in pharmaceutical preparation and biological samples.  相似文献   
186.
This review presents a general overview about the development of ion-selective electrodes in Iran during the past decade (1996–2006). All of the reported ion-selective sensors (for cations, anions and organic species) are cited in this review. Sensors for 39 cations, 12 anions, and 23 organic compounds and drugs have been reported in this reivew. Some of the main group cations (e.g. beryllium) as well as most of the lanthanide ion (i.e., presidium, erbium, lutetium, cerium, neodymium, europium, gadolinium, terbium, dysprosium, holmium, ytterbium, and thulium) sensors have been reported for the first time. It is noticable that the best reported sensors for HPO4 2?, SO4 2?, Cl?, ClO4 ?, Br?, and I3 ? have been designed and constructed by the Iranian researchers.  相似文献   
187.
In this study a new technique has been developed for the determination of chloropromazine in flow‐injection systems. The technique, named fast Fourier transformation continuous cyclic voltammetry (FFTCV), basically illustrates the benefits of sensitivity, selectivity, simplicity and low detection limit. It is also important to refer to the positive points, presented only by the use of this technique. Firstly, it is no longer necessary to remove the oxygen from the test solution. Furthermore, the quick determination of any such compound in many chromatographic methods is possible. Thirdly, the corresponding detection limit is of sub‐nanomolar level. Additionally, a special computer based numerical method is also introduced for the calculation of the analyte signal and noise reduction. The electrode response was calculated in accordance with the partial and total charge exchanges on the electrode surface, after the background current subtraction from that of noise. The integration range of currents was set for all the potential scan ranges, including oxidation and reduction of Au surface electrode, to obtain a sensitive determination. The performed experiments aimed at measuring the effects of different parameters on the method sensitivity. In the end of these measurements, it was concluded that the method was linear for the concentration range of 0.32–31900 pg/mL (r = 0.996) with a limit of detection and quantitation 0.1 and 0.32 pg/mL, respectively. For the achievement of these optimum results, the parameter values were set to 100 V/s for the scan rate, 0.4 s for accumulation time, 800 mV for accumulation potential and 2 for the pH.  相似文献   
188.
The novel 1,10‐phenanthroline‐2,9‐dicarboxylate containing Chromium(III) complex, (pydaH)[Cr(phendc)2] · 5H2O, was synthesized using proton‐transfer compound LH2, (pydaH2)2+(phendc)2?, (pyda: 2,6‐pyridinediamine; phendcH2: 1,10‐phenanthroline‐2,9‐dicarboxylic acid) and thoroughly characterized by elemental analysis, IR spectroscopy, X‐ray crystallography and cyclic voltammetry. The complex crystallizes in the monoclinic space group P21/n with four formula units in the unit cell. The unit cell dimensions are: a = 13.962(3) Å, b = 14.529(3) Å, c = 16.381(3) Å and β = 106.691(4)°. In this complex, 1,10‐phenanthroline‐2,9‐dicarboxylate acts as a tridentate ligand and the lattice is composed of anionic hexacoordinated complex, [Cr(phendc)2]?, 2,6‐pyridiniumdiamine counter ion, (pydaH)+, and five lattice water molecules. Crystallographic characterization revealed that the resulting supramolecular structure is strongly stabilized by complicated network of hydrogen bonds between the crystallization water molecules, counter ion and both coordinated and uncoordinated carboxylate groups. There is no relevant π‐π interaction for this anionic complex between pyda or phendc moieties. The electrochemical studies indicated over potential for both the cathodic and anodic peaks of the complex with respect to the free Cr3+ ion, as a consequence of the energy requirement for rearrangement of the ligand at electrode surface.  相似文献   
189.
A new detection technique called the fast Fourier transform square-wave voltammetry (FFT-SWV) is based on the measurements of electrode admittance as a function of potential. The response of the detector (microelectrode) is fast, which makes the method suitable for most applications involving flowing electrolytes. The carbon paste electrode was modified by nanostructures to improve better sensitivity. The response is generated by a redox processes. The redox property of L-dopa was used for determination of it in human serum and urine samples. The support electrolyte that provided a more defined and intense peak current for L-dopa determination was at 0.05 mol l?1 acetate buffer pH 7.0. Synthesized dysprosium nanowires make more effective surface like nanotubes [1], [2], [3], [4] so they are good candidates for using as a modifier for electrochemical reactions. The drug presented one irreversible oxidation peaks at 360 mV versus Ag/AgCl by modified nanowire carbon paste electrode which produced high current and reduced the oxidation potential about 80 mV.Furthermore, signal-to-noise ratio has significantly increased by application of discrete fast Fourier transform (FFT) method, background subtraction and two-dimensional integration of the electrode response over a selected potential range and time window. To obtain the much sensitivity the effective parameters such as frequency, amplitude and pH was optimized. As a result, CDL of 4.0 × 10?9 M and an LOQ of 7.0 × 10?9 M were found for determination for L-dopa. A good recovery was obtained for assay spiked urine samples and a good quantification of L-dopa was achieved in a commercial formulation.  相似文献   
190.
A highly La(III) ion-selective PVC membrane sensor based on N'-(1-pyridin-2-ylmethylene)-2-furohydrazide (NPYFH) as an excellent sensing material was successfully developed. The electrode shows a good selectivity for La(III) ion with respect to most common cations including alkali, alkaline earth, transition and heavy metal ions. The proposed sensor exhibits a wide linear response with slope of 19.2 +/- 0.6 mV per decade over the concentration range of 1.0 x 10(-6) - 1.0 x 10(-1) M, and a detection limit of 7.0 x 10(-7) M of La(III) ions. The sensor response is independent of pH in the range of 3.5-10.0. The proposed electrode was applied as an indicator electrode in potentiometric titration of La(III) ion with EDTA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号