首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   1篇
化学   40篇
晶体学   2篇
力学   8篇
数学   15篇
物理学   33篇
  2024年   1篇
  2020年   1篇
  2018年   1篇
  2016年   5篇
  2015年   3篇
  2013年   3篇
  2012年   4篇
  2011年   4篇
  2010年   6篇
  2009年   1篇
  2008年   13篇
  2007年   8篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1997年   2篇
  1994年   1篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1935年   2篇
排序方式: 共有98条查询结果,搜索用时 234 毫秒
41.
Rate coefficients over the temperature range 206-380 K are reported for the gas-phase reaction of OH radicals with 2,3,3,3-tetrafluoropropene (CF(3)CF=CH(2)), k(1)(T), and 1,2,3,3,3-pentafluoropropene ((Z)-CF(3)CF=CHF), k(2)(T), which are major components in proposed substitutes for HFC-134a (CF(3)CFH(2)) in mobile air-conditioning units. Rate coefficients were measured under pseudo-first-order conditions in OH using pulsed-laser photolysis to produce OH and laser-induced fluorescence to detect it. Rate coefficients were found to be independent of pressure between 25 and 600 Torr (He, N(2)). For CF(3)CF=CH(2), the rate coefficients, within the measurement uncertainty, are given by the Arrhenius expression k(1)(T)=(1.26+/-0.11) x 10(-12) exp[(-35+/-10)/T] cm(3) molecule(-1) s(-1) where k(1)(296 K)=(1.12+/-0.09) x 10(-12) cm(3) molecule(-1) s(-1). For (Z)-CF(3)CF=CHF, the rate coefficients are given by the non-Arrhenius expression k(2)(T)=(1.6+/-0.2) x 10(-18)T(2) exp[(655+/-50)/T] cm(3) molecule(-1) s(-1) where k(2)(296 K)=(1.29+/-0.06) x 10(-12) cm(3) molecule(-1) s(-1). Over the temperature range most relevant to the atmosphere, 200-300 K, the Arrhenius expression k(2)(T)=(7.30+/-0.7) x 10(-13) exp[(165+/-20)/T] cm(3) molecule(-1) s(-1) reproduces the measured rate coefficients very well and can be used in atmospheric model calculations. The quoted uncertainties in the rate coefficients are 2sigma (95% confidence interval) and include estimated systematic errors. The global warming potentials for CF(3)CF=CH(2) and (Z)-CF(3)CF=CHF were calculated to be <4.4 and <3.6, respectively, for the 100 year time horizon using infrared absorption cross sections measured in this work, and atmospheric lifetimes of 12 and 10 days that are based solely on OH reactive loss.  相似文献   
42.
Grand canonical Monte Carlo simulations are performed to evaluate the hydrogen-storage capacity of the recently discovered hydrogen hydrates of the sH type, at 274 K and up to 500 MPa. First, the pure H2 hydrate is investigated in order to determine the upper limit of H 2 content in sH hydrates. It is found that the storage capacity of the hypothetical pure H2 hydrate could reach 3.6 wt % at 500 MPa. Depending on pressure, the large cavity of this hydrate can accommodate up to eight H2 molecules, while the small and medium ones are singly occupied even at pressures as high as 500 MPa. Next, the binary H2-methylcyclohexane sH hydrate is examined. In this case, the small and medium cavities are again singly occupied, resulting in a maximum H2 uptake of 1.4 wt %. Finally, the results from simulations on pure H2 and binary hydrates are utilized to investigate the potential of H2 storage in sH hydrates where the promoter molecules occupy the medium instead of the large cavities.  相似文献   
43.
44.
45.
46.
47.
48.
Comprehensive and thorough supervision of all banking institutions under a Central Bank’s regulatory control has become necessary as recent banking crises show. Promptly identifying bank distress and contagion issues is of great importance to the regulators. This paper proposes a methodology that can be used additionally to the standard methods of bank supervision or the new ones proposed to be implemented. By this, one can reveal the degree of banks’ connectedness and thus identify “core” instead of just “big” banks. Core banks are central in the network in the sense that they are shown to be crucial for network supervision. Core banks can be used as gauges of bank distress over a sub-network and promptly raise a red flag so that the central bank can effectively and swiftly focus on the corresponding neighborhood of financial institutions. In this paper we demonstrate the proposed scheme using as an example the asset returns variable. The method may and should be used with alternative variables as well.  相似文献   
49.
In this paper, the so‐called ‘continuous adjoint‐direct approach’ is used within the truncated Newton algorithm for the optimization of aerodynamic shapes, using the Euler equations. It is known that the direct differentiation (DD) of the flow equations with respect to the design variables, followed by the adjoint approach, is the best way to compute the exact matrix, for use along with the Newton optimization method. In contrast to this, in this paper, the adjoint approach followed by the DD of both the flow and adjoint equations (i.e. the other way round) is proved to be the most efficient way to compute the product of the Hessian matrix with any vector required by the truncated Newton algorithm, in which the Newton equations are solved iteratively by means of the conjugate gradient (CG) method. Using numerical experiments, it is demonstrated that just a few CG steps per Newton iteration are enough. Considering that the cost of solving either the adjoint or the DD equations is approximately equal to that of solving the flow equations, the cost per Newton iteration scales linearly with the (small) number of CG steps, rather than the (much higher, in large‐scale problems) number of design variables. By doing so, the curse of dimensionality is alleviated, as shown in a number of applications related to the inverse design of ducts or cascade airfoils for inviscid flows. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
50.
In this paper, four approaches to compute the Hessian matrix of an objective function used often in aerodynamic inverse design problems are presented. The computationally less expensive among them is selected and applied to the reconstruction of cascade airfoils that reproduce a prescribed pressure distribution over their walls, under inviscid and viscous flow considerations. The selected approach is based on the direct sensitivity analysis method for the computation of first derivatives, followed by the discrete adjoint method for the computation of the Hessian matrix. The applications presented in this paper show that the Newton method, based on exact Hessian matrices, outperforms other gradient‐based algorithms such as steepest descent or BFGS algorithm. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号