首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4016篇
  免费   94篇
  国内免费   21篇
化学   2309篇
晶体学   27篇
力学   245篇
数学   781篇
物理学   769篇
  2023年   26篇
  2022年   66篇
  2021年   64篇
  2020年   63篇
  2019年   69篇
  2018年   49篇
  2017年   62篇
  2016年   129篇
  2015年   108篇
  2014年   113篇
  2013年   238篇
  2012年   252篇
  2011年   241篇
  2010年   161篇
  2009年   146篇
  2008年   232篇
  2007年   239篇
  2006年   192篇
  2005年   175篇
  2004年   202篇
  2003年   151篇
  2002年   150篇
  2001年   57篇
  2000年   37篇
  1999年   44篇
  1998年   43篇
  1997年   49篇
  1996年   57篇
  1995年   47篇
  1994年   47篇
  1993年   34篇
  1992年   39篇
  1991年   30篇
  1990年   28篇
  1989年   19篇
  1988年   33篇
  1987年   28篇
  1986年   23篇
  1985年   45篇
  1984年   36篇
  1983年   33篇
  1982年   34篇
  1981年   33篇
  1980年   28篇
  1979年   30篇
  1978年   21篇
  1977年   20篇
  1976年   15篇
  1975年   16篇
  1974年   19篇
排序方式: 共有4131条查询结果,搜索用时 15 毫秒
111.
Oxide nanoparticles (oxide NPs) are advanced materials with a wide variety of applications in different fields. The use of continuous flow methods is particularly appealing for their synthesis due to the high control achieved over the reaction conditions and the easy process scalability. The present review focuses on the preparation of oxide NPs using microfluidic setups at low temperature (≤80 °C), since the employment of mild reaction conditions is crucial for developing sustainable and cost-effective processes. A particular emphasis will be put on the improvement over the final product features (e. g., size, shape, and size distribution) given by flow methods with respect to conventional batch procedures. The main issues that arise by treating NPs suspensions in microfluidic systems are product deposition or channel clogging; mitigation strategies to overcome these drawbacks will also be presented and discussed.  相似文献   
112.
Surface modification of enzymes for a potential use in therapy was obtained with a new type of tailor-made copolymers ofNacryloylmorpholine andN-acryloxysuccinimide. The first monomer was designed to confer solubility on the polymer, whereas the second was used to give it reactivity toward protein amino groups. The reactivity of polymers of different composition towards amino acid derivatives and model proteins, such as catalase and ribonuclease-A, is described. Water soluble and catalytically active enzyme derivatives were obained using copolymers prepared with a mixture of N-acryloxysuccinimide andn-acryloylmorpholine in a 1:99 molar ratio. At increasing molar ratio (3:97, 10:90) extensive crosslinking between polymer and enzymes takes place, yielding insoluble adducts.  相似文献   
113.
The cyclic voltammetric technique is used to study hydrogen-bond formation in some polar organic solvents (S) of electroanalytical interest (1,2-dimethoxy, tetrahydrofuran, dimethylformamide, dimethyl sulphoxide and pyridine). The cathodic shift of the proton reduction caused by stepwise addition of the solvent investigated to a solution of anhydrous perchloric acid in acetonitrile is utilized. The theoretical treatment applied produced evidence that HS+ and HS+2 are the only acidic species involved, so that the relevant formation constants can be evaluated. The data obtained mostly compare well with those available in the literature. The features that condition the tendency to hydrogen-bonding and the effect of hydrogen bonding on solvent basicity are discussed.  相似文献   
114.
Peroxidase activity in neutrophils is higher than in thioglycollate macrophages, while in lymphocytes this enzyme activity is very low. Indole-3-acetic acid is oxidized by peroxidase and the role of this enzyme in the cytotoxic effect of the compound was evaluated by measuring oxygen consumption, light emission and cell death in neutrophils, macrophages and lymphocytes. The increase in light emission, oxygen consumption and rate of cell death in cells cultured in the presence of indole-3-acetic acid presented a direct correlation with the peroxidase activity of the cells as follows: neutrophils > thioglycollate macrophages > resident macrophages > lymphocytes. Indeed, in lymphocytes that possess very low peroxidase activity, indole-3-acetic acid did not result in an increase in light emission or oxygen consumption and it was not cytotoxic.  相似文献   
115.
Biomolecular condensates are emerging as an efficient strategy developed by cells to control biochemical reactions in space and time by locally modifying composition and environment. Yet, local increase in protein concentration within these compartments could promote aberrant aggregation events, including the nucleation and growth of amyloid fibrils. Understanding protein stability within the crowded and heterogeneous environment of biological condensates is therefore crucial, not only when the aggregation-prone protein is the scaffold element of the condensates but also when proteins are recruited as client molecules within the compartments. Here, we investigate the partitioning and aggregation kinetics of the amyloidogenic peptide Abeta42 (Aβ-42), the peptide strongly associated with Alzheimer''s disease, recruited into condensates based on low complexity domains (LCDs) derived from the DEAD-box proteins Laf1, Dbp1 and Ddx4, which are associated with biological membraneless organelles. We show that interactions between Aβ-42 and the scaffold proteins promote sequestration and local increase of the peptide concentration within the condensates. Yet, heterotypic interactions within the condensates inhibit the formation of amyloid fibrils. These results demonstrate that biomolecular condensates could sequester aggregation-prone proteins and prevent aberrant aggregation events, despite the local increase in their concentration. Biomolecular condensates could therefore work not only as hot-spots of protein aggregation but also as protective reservoirs, since the heterogenous composition of the condensates could prevent the formation of ordered fibrillar aggregates.

Biomolecular condensates sequester an aggregation-prone peptide and prevent its aggregation, showing that heterotypic interactions within the condensates can prevent the formation of amyloid fibrils, despite the local increase in concentration.  相似文献   
116.
Flavohemoglobins have the particular capability of binding unsaturated and cyclopropanated fatty acids as free acids or phospholipids. Fatty acid binding to the ferric heme results in a weak but direct bonding interaction. Ferrous and ferric protein, in presence or absence of a bound lipid molecule, have been characterized by transient absorption spectroscopy. Measurements have been also carried out both on the ferrous deoxygenated and on the CO bound protein to investigate possible long-range interaction between the lipid acyl chain moiety and the ferrous heme. After excitation of the deoxygenated derivatives the relaxation process reveals a slow dynamics (350 ps) in lipid-bound protein but is not observed in the lipid-free protein. The latter feature and the presence of an extra contribution in the absorption spectrum, indicates that the interaction of iron heme with the acyl chain moiety occurs only in the excited electronic state and not in the ground electronic state. Data analysis highlights the formation of a charge-transfer complex in which the iron ion of the lipid-bound protein in the expanded electronic excited state, possibly represented by a high spin Fe III intermediate, is able to bind to the sixth coordination ligand placed at a distance of at 3.5 Å from the iron. A very small nanosecond geminate rebinding is observed for CO adduct in lipid-free but not in the lipid-bound protein. The presence of the lipid thus appears to inhibit the mobility of CO in the heme pocket.  相似文献   
117.
A microwave distillation method was optimized for the extraction and isolation of cannabis essential oil from fresh and dried hemp inflorescences. The developed method enabled us to obtain a distilled product rich in terpenes and terpenoid compounds, responsible of the typical and unique smell of the cannabis plant. The distillate from different hemp cultivars, including Kompolti, Futura 75, Carmagnola, Felina 32 and Finola were characterized by using a gas chromatograph equipped with both mass spectrometer and flame ionization detectors. In a single chromatographic run, the identity and absolute amounts of distilled compounds were determined. Peak assignment was established using a reliable approach based on the usage of two identification parameters, named reverse match, and linear retention index filter. Absolute quantification (mg g−1) of the analytes was performed using an internal standard method applying the flame ionization detector (FID) response factors according to each chemical family. An enantio-GC-MS method was also developed in order to evaluate the enantiomeric distribution of chiral compounds, an analytical approach commonly utilized for establishing the authenticity of suspicious samples.  相似文献   
118.
Following a similar approach on carvacrol-based derivatives, we investigated the synthesis and the microbiological screening against eight strains of H. pylori, and the cytotoxic activity against human gastric adenocarcinoma (AGS) cells of a new series of ether compounds based on the structure of thymol. Structural analysis comprehended elemental analysis and 1H/13C/19F NMR spectra. The analysis of structure–activity relationships within this molecular library of 38 structurally-related compounds reported that some chemical modifications of the OH group of thymol led to broad-spectrum growth inhibition on all isolates. Preferred substitutions were benzyl groups compared to alkyl chains, and the specific presence of functional groups at para position of the benzyl moiety such as 4-CN and 4-Ph endowed the most anti-H. pylori activity toward all the strains with minimum inhibitory concentration (MIC) values up to 4 µg/mL. Poly-substitution on the benzyl ring was not essential. Moreover, several compounds characterized by the lowest minimum inhibitory concentration/minimum bactericidal concentration (MIC/MBC) values against H. pylori were also tested in order to verify a cytotoxic effect against AGS cells with respect to 5-fluorouracil and carvacrol. Three derivatives can be considered as new lead compounds alternative to current therapy to manage H. pylori infection, preventing the occurrence of severe gastric diseases. The present work confirms the possibility to use natural compounds as templates for the medicinal semi-synthesis.  相似文献   
119.
Considering the growing number of extra virgin olive oil (EVOO) producers in the world, knowing the influence of olive oils with different geographical origins on the characteristics of the final blend becomes an interesting goal. The present work is focused on commercial organic EVOO blends obtained by mixing multiple oils from different geographical origins. These blends have been studied by 1H-NMR spectroscopy supported by multivariate statistical analysis. Specific characteristics of commercial organic EVOO blends originated by mixing oils from Italy, Tunisia, Portugal, Spain, and Greece were found to be associated with the increasing content of the Italian component. A linear progression of the metabolic profile defined characteristics for the analysed samples—up to a plateau level—was found in relation to the content of the main constituent of the Italian oil, the monocultivar Coratina. The Italian constituent percentage appears to be correlated with the fatty acids (oleic) and the polyphenols (tyrosol, hydroxytyrosol, and derivatives) content as major and minor components respectively. These results, which highlight important economic aspects, also show the utility of 1H-NMR associated with chemometric analysis as a powerful tool in this field. Mixing oils of different national origins, to obtain blends with specific characteristics, could be profitably controlled by this methodology.  相似文献   
120.
During the last decade, there has been a tremendous interest for developing non-natural biocompatible transformations in biologically relevant media. Among the different encountered strategies, the use of transition metal complexes offers unique possibilities due to their high transformative power. However, translating the potential of metal catalysts to biological settings, including living cells or small-animal models such as mice or zebrafish, poses numerous challenges associated to their biocompatibility, and their stability and reactivity in crowded aqueous environments. Herein, we describe the most relevant advances in this direction, with a particular emphasis on the systems’ structure, their mode of action and the mechanistic bases of each transformation. Thus, the key challenges from an organometallic perspective might be more easily identified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号