首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2054篇
  免费   271篇
  国内免费   242篇
化学   1431篇
晶体学   20篇
力学   90篇
综合类   4篇
数学   331篇
物理学   691篇
  2024年   7篇
  2023年   48篇
  2022年   75篇
  2021年   87篇
  2020年   102篇
  2019年   73篇
  2018年   64篇
  2017年   68篇
  2016年   96篇
  2015年   91篇
  2014年   96篇
  2013年   142篇
  2012年   164篇
  2011年   172篇
  2010年   92篇
  2009年   113篇
  2008年   125篇
  2007年   119篇
  2006年   92篇
  2005年   94篇
  2004年   54篇
  2003年   42篇
  2002年   40篇
  2001年   45篇
  2000年   46篇
  1999年   37篇
  1998年   26篇
  1997年   28篇
  1996年   42篇
  1995年   35篇
  1994年   34篇
  1993年   29篇
  1992年   24篇
  1991年   33篇
  1990年   25篇
  1989年   14篇
  1988年   15篇
  1987年   13篇
  1986年   11篇
  1985年   10篇
  1984年   11篇
  1983年   4篇
  1982年   8篇
  1981年   5篇
  1980年   4篇
  1979年   5篇
  1977年   2篇
  1975年   2篇
  1968年   1篇
  1957年   1篇
排序方式: 共有2567条查询结果,搜索用时 0 毫秒
331.
Ru-doped SnO2 nanoparticles were prepared by chemical precipitation and calcinations at 823 K. Due to high stability in diluted acidic solution, Ru-doped SnO2 nanoparticles were selected as the catalyst support and second catalyst for methanol electrooxidation. The micrograph, elemental composition, and structure of the Ru-doped SnO2 nanoparticles were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, respectively. The electrocatalytic properties of the Ru-doped SnO2-supported Pt catalyst (Pt/Ru-doped SnO2) for methanol oxidation have been investigated by cyclic voltammetry. Under the same loading mass of Pt, the Pt/Ru-doped SnO2 catalyst shows better electrocatalytic performance than the Pt/SnO2 catalyst and the best atomic ratio of Ru to Sn in Ru-doped SnO2 is 1/75. Additionally, the Pt/Ru-doped SnO2 catalyst possesses good long-term cycle stability.  相似文献   
332.
Pursuing high power density lithium metal battery with high safety is essential for developing next-generation energy-storage devices, but uncontrollable electrolyte degradation and the consequence formed unstable solid-electrolyte interface (SEI) make the task really challenging. Herein, an ionic liquid (IL) confined MOF/Polymer 3D-porous membrane was constructed for boosting in situ electrochemical transformations of Janus-heterarchical LiF/Li3N-rich SEI films on the nanofibers. Such a 3D-Janus SEI-incorporated into the separator offers fast Li+ transport routes, showing superior room-temperature ionic conductivity of 8.17×10−4 S cm−1 and Li+ transfer number of 0.82. The cryo-TEM was employed to visually monitor the in situ formed LiF and Li3N nanocrystals in SEI and the deposition of Li dendrites, which is greatly benefit to the theoretical simulation and kinetic analysis of the structural evolution during the battery charge and discharge process. In particular, this membrane with high thermal stability and mechanical strength used in solid-state Li||LiFePO4 and Li||NCM-811 full cells and even in pouch cells showed enhanced rate-performance and ultra-long life spans.  相似文献   
333.
Metal-organic complex (H3NCH2CH2NH2)3[MoO2(OC6H4O)2] with a lamellar morphology has been syn- thesized. Its crystal structure was confirmed by single-crystal X-ray diffraction. The morphology of the crystal was observed by scanning electron microscopy (SEM). The metal-organic nanoparticles have been prepared by using an ultrasonic method. The morphology of the as-prepared nanoparticles was observed by transmission electron microscopy (TEM). The possible formation mechanism has also been proposed.  相似文献   
334.
A biocompatible nanocomposite film was fabricated for hemoglobin (Hb) molecules immobilization. This film consists of multiwalled carbon nanotubes (MWNTs), 1‐pyrenebutanoic acid, succinimidyl ester (PASE), hemoglobin (Hb) and Au nanoparticles (AuNPs). Herein, PASE molecules physically adsorbed onto MWNTs, and its groups then covalently bond with Hb. AuNPs were then linked with Hb/PASE/MWNTs via electrostatic adsorption force. UV‐visible adsorption spectra, Fourier transform infrared spectra, scanning electron microscope and electrochemical impedance spectroscopy have characterized the film. Cyclic voltammetry (CV) scans showed that in the film Hb has well‐defined redox reaction, with the formal potential (E°) at about ?0.27 V (vs. Ag/AgCl). Herein, differential pulse voltammetry (DPV) was employed to electrochemically detect the Hb in the film with a detection limit of 9.3×10?8 M. The proposed method was also succeeded for Hb detection in clinical blood samples. Furthermore, the Hb in the film showed good electrocatalytic activities to the reduction of H2O2, TCA, NaNO2 and O2.  相似文献   
335.
The HCNO + CN reaction is one potentially important process during the NO-reburning process for the reduction of NOx pollutants from fossil fuel combustion emissions. To compare with the recent experimental study, we performed the first theoretical potential energy surface investigation on the mechanism of HCNO + CN at the G3B3 and CCSD(T)/aug-cc-pVTZ levels based on the B3LYP/6-311++G(d,p) structures, covering various entrance, isomerization, and decomposition channels. The results indicate that the most favorable channel is to barrierlessly form the entrance isomer L1c NCCHNO followed by successive ring closure and concerted CC and NO bond rupture to generate the product P1 HCN + NCO. However, the formation of P4 (3)HCCN + NO, predicted as the only major product in the recent experiment, is kinetically much less competitive. This conclusion is further supported by the master equation rate constant calculation. Future experimental reinvestigations are strongly desired to test the newly predicted mechanism for the CN + HCNO reaction. Implications of the present results are discussed.  相似文献   
336.
337.
Two novel tungstovanadophosphate derivatives, namely [Fe(phen)3]2[PW8VIVVV5IVO42] · H2O (1) and [Fe(phen)3]2[PW9V3O40] (2), were synthesized under hydrothermal conditions, and characterized by elemental analysis, IR, ESR, XPS, TGA, and single-crystal X-ray diffraction analysis. The crystal structure analyses reveal that the ‘mixed-addenda’ Keggin polyoxoanion in 1 is decorated with VO2+ units, such that four V atoms are disordered over eight metal sites; the anion in compound 2 has a typical Keggin structure with three V atoms disordered over 12 metal sites. The two compounds are ionic crystals with slightly different packing modes for the polyoxoanions and [Fe(phen)3]3+ cations. ππ stacking interactions between phen molecules, weak hydrogen bonding interactions between phen ligands and polyoxoanions, and electrostatic forces lead to an extended 3D supramolecular framework. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
338.
The Aurora family of serine/threonine kinases are mitotic regulators involved in centrosome duplication, formation of the bipolar mitotic spindle and the alignment of the chromosomes along the spindle. These proteins are frequently overexpressed in tumor cells as compared to normal cells and are therefore potential therapeutic oncology targets. An Aurora A high throughput screen revealed a promising sub-micromolar indazole-benzimidazole lead. Modification of the benzimidazole portion of the lead to a C2 linker with a phenyl ring was proposed to achieve novelty. Docking revealed that a conjugated linker was optimal and the resulting compounds were equipotent with the lead. Further structure-guided optimization of substituents on the 5 & 6 position of the indazole led to single digit nanomolar potency. The homology between the Aurora A & Aurora B kinase domains is 71% but their binding sites only differ at residues 212 & 217 (Aurora A numbering). However interactions with only the latter residue may be used for obtaining selectivity. An analysis of published Aurora A and Aurora B X-ray structures reveals subtle differences in the shape of the binding sites. This was exploited by introduction of appropriately sized substituents in the 4 & 6 position of the indazole leading to Aurora B selective inhibitors. Finally we calculate the conformational energy penalty of the putative bioactive conformation of our inhibitors and show that this property correlates well with the Aurora A binding affinity.  相似文献   
339.
A series of structurally diverse gold and silver complexes extending from ionic (NHC) 2M(+)Cl(-) (M=Au, Ag) type complexes to large 12-membered macrometallacycles have been prepared by the appropriate modification of the N-substituent of amido-functionalized N-heterocyclic carbenes. Specifically, the ionic, [1-(R)-3-{ N-(t-butylacetamido)imidazol-2-ylidene}]2M(+)Cl(-), (R=t-Bu, i-Pr; M=Au, Ag; 1b, 1c, 2b, 2c) complexes, were obtained in case of the N- t-butyl substituent of the amido-functionalized sidearm while 12-membered macrometallacycles, [1-(R)-3-{N-(2,6-di i-propylphenylacetamido)imidazol-2-ylidene}]2M2, (R=t-Bu, i-Pr; M=Au, Ag; 3b, 3c, 4b, 4c) were obtained in case of the 2,6-di i-propylphenyl N-substituent. These structurally diverse complexes of gold and silver were, however, prepared employing a common synthetic pathway involving the reactions of the imidazolium chloride salts (1a, 2a, 3a, 4a) with Ag2O to give the silver complexes (1b, 2b, 3b, 4b) and which, when treated with (SMe2)AuCl, gave the gold complexes (1c, 2c, 3c, 4c). Detailed density functional theory studies of 1b, 1c, 2b, 2c, 3b, 3c, 4b, and 4c were carried out to gain insight about the structure, bonding, and the electronic properties of these complexes. The NHC-metal interaction in the ionic 1b, 1c, 2b, and 2c complexes is primarily composed of the interaction of the carbene lone pair with the empty p orbital of the metal (5p for Ag and 6p for Au) while the same in the macrometallacyclic 3b, 3c, 4b, and 4c complexes consisted of the interaction of the carbene lone pair with the empty s orbital of the metal (5s for Ag and 6s for Au). The observation of a low energy emission in about the 580-650 nm region has been tentatively assigned to originate from the presence of weak metallophilic interaction in these macrometallacyclic 3b, 3c, 4b, and 4c complexes.  相似文献   
340.
Antibacterial cotton helps prevent the growth and spread of harmful microorganisms, reduces the risk of infection, and has a prolonged service life by reducing bacterial degradation. However, most antibacterial agents used are toxic to humans and the environment. Citronellol-poly(N,N-dimethyl ethyl methacrylate) (CD), a highly effective antibacterial polymer, is synthesized from natural herbal essential oils (EOs). CD exhibited efficient, rapid bactericidal activity against Gram-positive, Gram-negative, and drug-resistant bacteria. Citronellol's environmental benignity makes CDs less hemolytic. Notably, negligible drug resistance developed after 15 bacterial subcultures. The CD-treated cotton fabric displayed better antibacterial performance than AAA-grade antibacterial fabric, even after repeated washing. This study extends the practical application of EOs to antibacterial surfaces and fabrics, which is promising for use in personal care products and medical settings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号